一种基于点云的三维目标检测方法

    公开(公告)号:CN112288709B

    公开(公告)日:2022-04-29

    申请号:CN202011169810.1

    申请日:2020-10-28

    Applicant: 武汉大学

    Abstract: 本发明公开了一种基于点云的三维目标检测方法,该方法首先裁剪出有效的点云空间,将其划分为均匀的体素后进行特征提取,再使用三维稀疏卷积层将空间下采样八倍,并通过维度整合将稀疏的三维数据转化为二维俯视图,最后使用分裂‑聚合特征金字塔网络作为区域建议网络的骨干网络,实现对物体的精细检测。其中分裂‑聚合特征金字塔网络包含两个分支,粗糙分支提取多尺度俯视图特征用于检测不同尺寸的物体,并利用丰富的上下文信息来减少背景点和噪声点造成的误检,精细分支对粗糙分支的多尺度特征进一步细化,并完成多尺度特征图的交叉融合,实现了高质量的俯视图边界框回归和高精度的三维目标检测。

    一种基于对称点生成的点云3D目标检测方法

    公开(公告)号:CN112598635B

    公开(公告)日:2024-03-12

    申请号:CN202011501459.1

    申请日:2020-12-18

    Applicant: 武汉大学

    Abstract: 本发明涉及一种基于对称点生成的点云3D目标检测方法。本发明首先对原始点云进行过滤并体素化检测空间,生成初始体素特征输入到对称点生成模块,通过其编解码结构获得高层语义特征并经过分类头和回归头进行前景点分割以及对称点预测,将预测的前景点对应的对称点集与非空体素中心点集组成增强点云作为区域提案网络的输入,通过其骨干网络进一步提取俯视图特征,并作为检测头的输入,检测头最终输出待检测物体的3D框。本发明利用检测对象的对称性,生成对称点,从根本上缓解了点云中物体结构缺失的问题,能够改善回归效果并提高检测精度,同时支持将RPN替换成其他基于体素的检测方法,使得原来检测效果较差的检测器也能产生具有竞争力的检测结果。

    一种基于点云的三维目标检测方法

    公开(公告)号:CN112288709A

    公开(公告)日:2021-01-29

    申请号:CN202011169810.1

    申请日:2020-10-28

    Applicant: 武汉大学

    Abstract: 本发明公开了一种基于点云的三维目标检测方法,该方法首先裁剪出有效的点云空间,将其划分为均匀的体素后进行特征提取,再使用三维稀疏卷积层将空间下采样八倍,并通过维度整合将稀疏的三维数据转化为二维俯视图,最后使用分裂‑聚合特征金字塔网络作为区域建议网络的骨干网络,实现对物体的精细检测。其中分裂‑聚合特征金字塔网络包含两个分支,粗糙分支提取多尺度俯视图特征用于检测不同尺寸的物体,并利用丰富的上下文信息来减少背景点和噪声点造成的误检,精细分支对粗糙分支的多尺度特征进一步细化,并完成多尺度特征图的交叉融合,实现了高质量的俯视图边界框回归和高精度的三维目标检测。

    一种基于对称点生成的点云3D目标检测方法

    公开(公告)号:CN112598635A

    公开(公告)日:2021-04-02

    申请号:CN202011501459.1

    申请日:2020-12-18

    Applicant: 武汉大学

    Abstract: 本发明涉及一种基于对称点生成的点云3D目标检测方法。本发明首先对原始点云进行过滤并体素化检测空间,生成初始体素特征输入到对称点生成模块,通过其编解码结构获得高层语义特征并经过分类头和回归头进行前景点分割以及对称点预测,将预测的前景点对应的对称点集与非空体素中心点集组成增强点云作为区域提案网络的输入,通过其骨干网络进一步提取俯视图特征,并作为检测头的输入,检测头最终输出待检测物体的3D框。本发明利用检测对象的对称性,生成对称点,从根本上缓解了点云中物体结构缺失的问题,能够改善回归效果并提高检测精度,同时支持将RPN替换成其他基于体素的检测方法,使得原来检测效果较差的检测器也能产生具有竞争力的检测结果。

Patent Agency Ranking