基于GA优化的GRU并行网络流量异常检测方法

    公开(公告)号:CN111726349B

    公开(公告)日:2022-07-08

    申请号:CN202010550578.X

    申请日:2020-06-16

    Abstract: 本发明公开了一种基于GA优化的GRU并行网络流量异常检测方法,首先获取样本数据和种群数阈值,并利用随机生成的方式初始化种群和种群计数器,其次基于Spark大数据平台,以弹性分布式数据集的形式对所述种群中每个个体的样本数据进行特征选择和约简,同时利用GRU检测器对约简后的数据进行训练和分类,并将检测精度作为所述个体的适应度值;接着根据适应度值进行选择运算、交叉运算和变异运算;最后根据得到的新的基因组个体,重新计算对应的适应度值,并当所述适应度值达到设定阈值或者所述种群计数器达到设定值,则输出设定适应度值,同时利用GRU检测器对测试数据集进行检测,得到异常检测结果,提升异常检测效率和检测精度。

    基于Bagging改进的GRU并行网络流量异常检测方法

    公开(公告)号:CN111726351A

    公开(公告)日:2020-09-29

    申请号:CN202010550593.4

    申请日:2020-06-16

    Abstract: 本发明公开了一种基于Bagging改进的GRU并行网络流量异常检测方法,首先利用Spark平台以分布式方式进行数据采集,并对采集的数据进行清洗、转换和标准化后,基于Spark大数据处理技术,以弹性分布式数据集形式对样本集进行有放回抽取采样,利用Bagging算法以并行方式对GRU模型进行训练,同时利用模型平均法,得到集成检测器,利用二分类损失函数对所述集成检测器进行评价,利用所述集成检测器对测试数据集进行检测,得到检测结果,提升检测精度和检测效率。

    基于Bagging改进的GRU并行网络流量异常检测方法

    公开(公告)号:CN111726351B

    公开(公告)日:2022-07-05

    申请号:CN202010550593.4

    申请日:2020-06-16

    Abstract: 本发明公开了一种基于Bagging改进的GRU并行网络流量异常检测方法,首先利用Spark平台以分布式方式进行数据采集,并对采集的数据进行清洗、转换和标准化后,基于Spark大数据处理技术,以弹性分布式数据集形式对样本集进行有放回抽取采样,利用Bagging算法以并行方式对GRU模型进行训练,同时利用模型平均法,得到集成检测器,利用二分类损失函数对所述集成检测器进行评价,利用所述集成检测器对测试数据集进行检测,得到检测结果,提升检测精度和检测效率。

    基于GA优化的GRU并行网络流量异常检测方法

    公开(公告)号:CN111726349A

    公开(公告)日:2020-09-29

    申请号:CN202010550578.X

    申请日:2020-06-16

    Abstract: 本发明公开了一种基于GA优化的GRU并行网络流量异常检测方法,首先获取样本数据和种群数阈值,并利用随机生成的方式初始化种群和种群计数器,其次基于Spark大数据平台,以弹性分布式数据集的形式对所述种群中每个个体的样本数据进行特征选择和约简,同时利用GRU检测器对约简后的数据进行训练和分类,并将检测精度作为所述个体的适应度值;接着根据适应度值进行选择运算、交差运算和变异运算;最后根据得到的新的基因组个体,重新计算对应的适应度值,并当所述适应度值达到设定阈值或者所述种群计数器达到设定值,则输出设定适应度值,同时利用GRU检测器对测试数据集进行检测,得到异常检测结果,提升异常检测效率和检测精度。

Patent Agency Ranking