-
公开(公告)号:CN113407716B
公开(公告)日:2022-08-19
申请号:CN202110529477.9
申请日:2021-05-14
Abstract: 本发明公开了一种基于众包的人类行为文本数据集的构造以及处理方法,首先,确定需要收集的主题对象,依据具体的要求生成任务并发布于众包平台,获得设定主题下所有可能发生的人类示例的文本数据集;对于同一个行为或事件的文本经过不同人的撰写会表现在多个句子,因此需要把描述同一事件的不同句子聚类在一起,因此,对于获取的数据集采用聚类的方式将本属于同一行为的不同文本表现聚为一类;采用关联分析技术挖掘出行为之间存在的先后关系结构;采用互信息技术学习出行为之间存在的互斥关系结构,并将人类行为存在的各种关系构造成一个情节图,即表明在某种情况下会发生什么事件,并限制其发生的方式,提高对人类行为的分析的准确性。
-
公开(公告)号:CN113407716A
公开(公告)日:2021-09-17
申请号:CN202110529477.9
申请日:2021-05-14
Abstract: 本发明公开了一种基于众包的人类行为文本数据集的构造以及处理方法,首先,确定需要收集的主题对象,依据具体的要求生成任务并发布于众包平台,获得设定主题下所有可能发生的人类示例的文本数据集;对于同一个行为或事件的文本经过不同人的撰写会表现在多个句子,因此需要把描述同一事件的不同句子聚类在一起,因此,对于获取的数据集采用聚类的方式将本属于同一行为的不同文本表现聚为一类;采用关联分析技术挖掘出行为之间存在的先后关系结构;采用互信息技术学习出行为之间存在的互斥关系结构,并将人类行为存在的各种关系构造成一个情节图,即表明在某种情况下会发生什么事件,并限制其发生的方式,提高对人类行为的分析的准确性。
-
公开(公告)号:CN115761238B
公开(公告)日:2024-09-17
申请号:CN202211654339.4
申请日:2022-12-19
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于多分支深度可分离空洞卷积的实时语义分割方法,其语义分割网络采用多分支全卷积网络能高效进行上下文信息与细节信息的融合,并补全在下采样中损失的信息,其信息提取网络结构先通过卷积模块对信息进行初步提取并下采样;细节分支通过卷积模块不断提取细节信息;上下文分支通过卷积模块提取上下文信息,多级上采样解码模块能够增加感受野进一步提取上下文信息;细节分支与上下文分通过信息融合模块进行高效信息交换;多尺度空洞深度可分离卷积模块为网络提供多种尺度的感受野并保持空间分辨率不变,同时对上下文信息与细节信息进行融合,并补全下采样过程中损失的信息,增强模型分割效果。
-
公开(公告)号:CN115761238A
公开(公告)日:2023-03-07
申请号:CN202211654339.4
申请日:2022-12-19
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于多分支深度可分离空洞卷积的实时语义分割方法,其语义分割网络采用多分支全卷积网络能高效进行上下文信息与细节信息的融合,并补全在下采样中损失的信息,其信息提取网络结构先通过卷积模块对信息进行初步提取并下采样;细节分支通过卷积模块不断提取细节信息;上下文分支通过卷积模块提取上下文信息,多级上采样解码模块能够增加感受野进一步提取上下文信息;细节分支与上下文分通过信息融合模块进行高效信息交换;多尺度空洞深度可分离卷积模块为网络提供多种尺度的感受野并保持空间分辨率不变,同时对上下文信息与细节信息进行融合,并补全下采样过程中损失的信息,增强模型分割效果。
-
公开(公告)号:CN114638415A
公开(公告)日:2022-06-17
申请号:CN202210263794.5
申请日:2022-03-17
Applicant: 桂林电子科技大学
IPC: G06Q10/04 , G06Q10/06 , G06Q10/10 , G06F16/901 , G06F16/909
Abstract: 本发明涉及计算机技术领域,尤其涉及一种基于Geohash索引的实时空间众包任务分配方法,首先利用Geohash算法为每个到来的工作者确定其覆盖的任务区域,然后利用线性加权和评价函数将工作者关于最小化出行距离、最大化获取报酬的双目标优化转换为单目标优化,将覆盖任务集内的任务评分,并综合工作者的任务接受意愿数量和排序结果进行任务分配,解决了目前空间众包任务分配方法缺乏同时考虑任务请求者和工作者双方的期望目标且不能很好地工作在大型数据集上的技术问题。
-
公开(公告)号:CN113408738A
公开(公告)日:2021-09-17
申请号:CN202110531696.0
申请日:2021-05-17
IPC: G06N20/00
Abstract: 本发明涉及机器学习领域,公开了一种基于强化学习设计伦理智能体的方法,包括从行为规范中归纳并提取出元伦理行为;利用众包技术对元伦理行为进行分级,得到元伦理行为分级;基于轨迹树、元伦理行为分级设计和强化学习算法设计奖励机制;选择生活场景并利用奖励机制进行伦理智能体训练。本发明实现对不同场景中相似行为的概括,能够从广义上概括出人们日常生活中的各类行为,保证了环境的一般性,在一定程度上解决了场景受限的问题;通过众包技术对元伦理行为进行分级统计,即能够节省时间成本;结合元伦理行为分级与轨迹树,完善强化学习中的奖惩机制,高效应对可能遇到的人类行为。
-
-
-
-
-