-
公开(公告)号:CN110334548B
公开(公告)日:2023-04-07
申请号:CN201910640430.2
申请日:2019-07-16
Applicant: 桂林电子科技大学
IPC: G06F21/62 , G06F16/906
Abstract: 本发明公开了一种基于差分隐私的数据异常检测方法,采取先进行聚类再进行异常检测的方法,在prim算法生成的最小生成树中,用差分隐私中的噪声机制对最小生成树中边的权重添加随机噪声,隐藏数据对象间的关联性。同时,该方法使用融合相异度和逆相似数的判决准则检测异常,解决传统的top‑n方法需要预设参数,选取异常数据的不准确性这一缺陷。本发明方法具有更高的鲁棒性和更强的适应性,通过仿真数据集和真实数据集的实验分析表明提出的方法在数据分布不均匀的环境下能有效保证隐私数据的安全性,并提高异常检测的查全率,降低误判率。
-
公开(公告)号:CN110334548A
公开(公告)日:2019-10-15
申请号:CN201910640430.2
申请日:2019-07-16
Applicant: 桂林电子科技大学
IPC: G06F21/62 , G06F16/906
Abstract: 本发明公开了一种基于差分隐私的数据异常检测方法,采取先进行聚类再进行异常检测的方法,在prim算法生成的最小生成树中,用差分隐私中的噪声机制对最小生成树中边的权重添加随机噪声,隐藏数据对象间的关联性。同时,该方法使用融合相异度和逆相似数的判决准则检测异常,解决传统的top-n方法需要预设参数,选取异常数据的不准确性这一缺陷。本发明方法具有更高的鲁棒性和更强的适应性,通过仿真数据集和真实数据集的实验分析表明提出的方法在数据分布不均匀的环境下能有效保证隐私数据的安全性,并提高异常检测的查全率,降低误判率。
-