基于CPU加速的波场正演模拟优化方法

    公开(公告)号:CN110162804B

    公开(公告)日:2020-01-21

    申请号:CN201810021270.9

    申请日:2018-01-10

    Abstract: 本发明公开了一种基于CPU加速的波场正演模拟优化方法,其包括以下步骤:S1)提出波场正演具体物理模型;S2)进行数值建模;在空间维度上使用高阶差分来模拟二阶微分,从而减小内存的使用;在时间维度上减少延拓步长;S3)进行静态分块及分配:根据线程数量k,将图像沿长边方向平均分成k个子图,然后将其按顺序标记后作为基础子图;S4)并行化及通信时间隐藏;S5)模型拆分和任务分解。本发明能够有效提高波场正演模拟的计算速度,并且能动态分块调配节点,从模型分块和通信时间隐藏两个方面优化,进行并行加速,充分利用多核计算资源,并有效的同步模拟实际物理传播过程。

    卷积神经网络的并行优化方法

    公开(公告)号:CN110163333A

    公开(公告)日:2019-08-23

    申请号:CN201810021291.0

    申请日:2018-01-10

    Abstract: 本发明涉及一种卷积神经网络的并行优化方法,其包括:用winograd算法f(2x2,3x3)进行卷积神经网络的卷积核运算,以降低时间复杂度并减少乘法运算次数;对不存在循环数据依赖的for循环结构部分,使用OpenMP开辟多个线程进行运算;对模式相同的数据运算部分进行向量化处理,使其能够实现一次指令多次运算。采用本发明的方法改进的卷积神经网络程序能够大幅度提高并行的效率、减少运算的复杂度,从根本上降低运算开销,降低程序的运行时间。

    基于CPU加速的波场正演模拟优化方法

    公开(公告)号:CN110162804A

    公开(公告)日:2019-08-23

    申请号:CN201810021270.9

    申请日:2018-01-10

    Abstract: 本发明公开了一种基于CPU加速的波场正演模拟优化方法,其包括以下步骤:S1)提出波场正演具体物理模型;S2)进行数值建模;在空间维度上使用高阶差分来模拟二阶微分,从而减小内存的使用;在时间维度上减少延拓步长;S3)进行静态分块及分配:根据线程数量k,将图像沿长边方向平均分成k个子图,然后将其按顺序标记后作为基础子图;S4)并行化及通信时间隐藏;S5)模型拆分和任务分解。本发明能够有效提高波场正演模拟的计算速度,并且能动态分块调配节点,从模型分块和通信时间隐藏两个方面优化,进行并行加速,充分利用多核计算资源,并有效的同步模拟实际物理传播过程。

    基于并行超算网格云平台的GRAPES系统优化方法

    公开(公告)号:CN108132872A

    公开(公告)日:2018-06-08

    申请号:CN201810021292.5

    申请日:2018-01-10

    Abstract: 本发明涉及一种基于并行超算网格云平台的GRAPES系统优化方法,其包括:S1)载入测试数据集并运行系统,分别进行系统级测试、通信级测试和函数级测试,其包括:S1.1)系统级测试;S1.2)通信级测试;S1.3)函数级测试:对调用的函数进行监控,获取函数的运行特征。S2)根据导出的系统特征文件进行测试结果分析,其包括:S2.1)系统测试结果分析;S2.2)MPI通信级测试结果分析;S2.3)函数级测试结果分析。S3)根据分析结果进行优化处理,优化处理包括:向量化、负载均衡、使用库函数替代GRAPES_GFS中的函数。本发明解决了Grapes在并行超算网格平台上的优化问题,提高了系统运行效率。

    卷积神经网络的并行优化方法

    公开(公告)号:CN110163333B

    公开(公告)日:2020-06-09

    申请号:CN201810021291.0

    申请日:2018-01-10

    Abstract: 本发明涉及一种卷积神经网络的并行优化方法,其包括:用winograd算法f(2x2,3x3)进行卷积神经网络的卷积核运算,以降低时间复杂度并减少乘法运算次数;对不存在循环数据依赖的for循环结构部分,使用OpenMP开辟多个线程进行运算;对模式相同的数据运算部分进行向量化处理,使其能够实现一次指令多次运算。采用本发明的方法改进的卷积神经网络程序能够大幅度提高并行的效率、减少运算的复杂度,从根本上降低运算开销,降低程序的运行时间。

    基于并行超算网格云平台的GRAPES系统优化方法

    公开(公告)号:CN108132872B

    公开(公告)日:2020-04-03

    申请号:CN201810021292.5

    申请日:2018-01-10

    Abstract: 本发明涉及一种基于并行超算网格云平台的GRAPES系统优化方法,其包括:S1)载入测试数据集并运行系统,分别进行系统级测试、通信级测试和函数级测试,其包括:S1.1)系统级测试;S1.2)通信级测试;S1.3)函数级测试:对调用的函数进行监控,获取函数的运行特征。S2)根据导出的系统特征文件进行测试结果分析,其包括:S2.1)系统测试结果分析;S2.2)MPI通信级测试结果分析;S2.3)函数级测试结果分析。S3)根据分析结果进行优化处理,优化处理包括:向量化、负载均衡、使用库函数替代GRAPES_GFS中的函数。本发明解决了Grapes在并行超算网格平台上的优化问题,提高了系统运行效率。

    基于消去树的大型稀疏对称线性方程组并行处理方法

    公开(公告)号:CN110162736A

    公开(公告)日:2019-08-23

    申请号:CN201810021260.5

    申请日:2018-01-10

    Abstract: 本发明公开了一种基于消去树的大型稀疏对称线性方程组并行处理方法,其包括以下步骤:步骤1:对A矩阵进行LU分解;步骤2:进行前推回代,计算Ly=b,求出y,然后Ux=y,求出x;采用基于消去树的双重任务划分法并行前推回代;步骤3:进行X数组重组,其包括:重组X数组,使得单个线程计算所需的数据位于内存中连续的空间;步骤4:进行循环合并,将除法运算与X数组重组等循环合并入前推回代过程,减小循环迭代开销与OpenMP线程创建开销。本发明通过基于消去树的双重任务划分法进行并行计算,充分利用了多核计算资源,显著提高了大型稀疏矩阵前推回代速度。

Patent Agency Ranking