-
公开(公告)号:CN112771504A
公开(公告)日:2021-05-07
申请号:CN201880095070.6
申请日:2018-06-29
Applicant: 微软技术许可有限责任公司
IPC: G06F11/22
Abstract: 本文中描述了用于多因素云服务存储设备错误预测的系统和技术。一组存储设备度量和一组计算系统度量可以被获取。特征集可以使用该一组存储设备度量和该一组计算系统度量而被生成。特征集的成员可以通过使用特征集的成员评估验证训练数据集而被验证。已修改特征集可以基于验证而被创建。存储设备故障模型可以使用已修改特征集而被创建。存储设备额定范围可以通过使存储设备的误分类成本最小化而被确定。待标记的一组存储设备可以被标识为具有高故障概率。
-
公开(公告)号:CN112740290B
公开(公告)日:2022-06-10
申请号:CN201880094684.2
申请日:2018-06-29
Applicant: 微软技术许可有限责任公司
IPC: G08B29/06
Abstract: 在此描述了用于多阶段云服务节点错误预测的系统和技术。针对云计算平台中的节点设备,可以获得空间度量集合和时间度量集合。可以使用空间机器学习模型和时间机器学习模型来评估节点设备,以创建空间输出和时间输出。可以基于使用排名模型对空间输出和时间输出的评估,来确定一个或多个潜在故障节点。一个或多个潜在故障节点可以是节点设备的子集。可以从一个或多个潜在故障节点标识一个或多个迁移源节点。可以通过最小化假阳性和假阴性节点检测的成本来标识一个或多个迁移源节点。
-
公开(公告)号:CN112740290A
公开(公告)日:2021-04-30
申请号:CN201880094684.2
申请日:2018-06-29
Applicant: 微软技术许可有限责任公司
IPC: G08B29/06
Abstract: 在此描述了用于多阶段云服务节点错误预测的系统和技术。针对云计算平台中的节点设备,可以获得空间度量集合和时间度量集合。可以使用空间机器学习模型和时间机器学习模型来评估节点设备,以创建空间输出和时间输出。可以基于使用排名模型对空间输出和时间输出的评估,来确定一个或多个潜在故障节点。一个或多个潜在故障节点可以是节点设备的子集。可以从一个或多个潜在故障节点标识一个或多个迁移源节点。可以通过最小化假阳性和假阴性节点检测的成本来标识一个或多个迁移源节点。
-
-