-
公开(公告)号:CN119622735A
公开(公告)日:2025-03-14
申请号:CN202411665446.6
申请日:2024-11-20
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06F8/71 , G06F8/75 , G06F18/25 , G06N3/0455 , G06N3/0495 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本公开涉及漏洞检测技术领域,提出了一种基于语义感知稀疏注意力的细粒度漏洞检测方法及系统,包括:解析待检测源代码,生成抽象语法树、控制流图和程序依赖图;将抽象语法树、控制流图和程序依赖图的图表示进行加权融合,整合为代码属性图;针对代码属性图,采用融合稀疏注意力、可学习Token剪枝方法以及Top‑k交互频率结合的语义感知稀疏注意力方法处理,得到Token注意力分数;基于得到的Token注意力分数,累加代码每行中每个Token的注意力分数,检测确定漏洞代码所在的语句。本公开的检测方法能够有效提升对代码语义信息的建模和结构化依赖关系的捕捉能力,同时显著降低计算复杂度。
-
公开(公告)号:CN118410498A
公开(公告)日:2024-07-30
申请号:CN202410881154.X
申请日:2024-07-03
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06N3/042 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了一种细粒度混合语义漏洞检测方法及系统,属于网络安全技术领域。包括将序列代码表示输入预训练语言模型进行处理,获取全局语义特征向量和注意力分数嵌入矩阵;将序列代码表示输入预设的多尺度融合卷积神经网络进行处理,获取局部特征向量;将图代码表示输入具有残差结构的图卷积神经网络进行处理,获取图嵌入向量;将全局语义特征向量、局部特征向量和图嵌入向量融合后输入训练好的漏洞检测模型进行处理,获取漏洞检测结果;根据漏洞检测结果和注意力分数嵌入矩阵对序列代码表示进行细粒度检测,获取漏洞定位结果。能够提高模型特征提取能力,提高漏洞检测的准确性;解决现有技术漏洞检测粒度过粗的问题。
-
公开(公告)号:CN118410498B
公开(公告)日:2024-10-01
申请号:CN202410881154.X
申请日:2024-07-03
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06N3/042 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了一种细粒度混合语义漏洞检测方法及系统,属于网络安全技术领域。包括将序列代码表示输入预训练语言模型进行处理,获取全局语义特征向量和注意力分数嵌入矩阵;将序列代码表示输入预设的多尺度融合卷积神经网络进行处理,获取局部特征向量;将图代码表示输入具有残差结构的图卷积神经网络进行处理,获取图嵌入向量;将全局语义特征向量、局部特征向量和图嵌入向量融合后输入训练好的漏洞检测模型进行处理,获取漏洞检测结果;根据漏洞检测结果和注意力分数嵌入矩阵对序列代码表示进行细粒度检测,获取漏洞定位结果。能够提高模型特征提取能力,提高漏洞检测的准确性;解决现有技术漏洞检测粒度过粗的问题。
-
-