-
公开(公告)号:CN113255750B
公开(公告)日:2022-11-08
申请号:CN202110533988.8
申请日:2021-05-17
Applicant: 安徽大学
Abstract: 本发明公开了一种基于深度学习的VCC车辆攻击检测方法,包含内部异常车辆检测和外部异常车辆检测;内部异常车辆检测包括:持续采集VCC内部车辆的信息并进行预处理;用预处理后的数据对自编码器进行训练;利用训练好的模型来检测内部车辆的异常;外部异常车辆检测包括:对请求加入VCC的外部车辆信息进行预处理;提取距离外部车辆申请时间最邻近的VCC内部车辆信息作为正常车辆数据;利用经过训练的自编码器的编码部分提取外部车辆信息与内部正常车辆信息的特征;构建支持向量数据描述分类器并进行训练;利用训练好的支持向量数据描述分类器对外部车辆进行检测。本发明利用车辆信息的时空特征,实现了无监督的VCC异常车辆检测。
-
公开(公告)号:CN113255750A
公开(公告)日:2021-08-13
申请号:CN202110533988.8
申请日:2021-05-17
Applicant: 安徽大学
Abstract: 本发明公开了一种基于深度学习的VCC车辆攻击检测方法,包含内部异常车辆检测和外部异常车辆检测;内部异常车辆检测包括:持续采集VCC内部车辆的信息并进行预处理;用预处理后的数据对自编码器进行训练;利用训练好的模型来检测内部车辆的异常;外部异常车辆检测包括:对请求加入VCC的外部车辆信息进行预处理;提取距离外部车辆申请时间最邻近的VCC内部车辆信息作为正常车辆数据;利用经过训练的自编码器的编码部分提取外部车辆信息与内部正常车辆信息的特征;构建支持向量数据描述分类器并进行训练;利用训练好的支持向量数据描述分类器对外部车辆进行检测。本发明利用车辆信息的时空特征,实现了无监督的VCC异常车辆检测。
-