基于手动特征伪装的热图像深度估计方法

    公开(公告)号:CN119559230B

    公开(公告)日:2025-05-06

    申请号:CN202410426737.3

    申请日:2024-04-10

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于手动特征伪装的热图像深度估计方法,首先输入原始热图像和相机内部参数;然后,计算得到加强热图像;其次,构造特征提取编码器、计算热图像特征图及其集合;再次,构造特征伪装结构,计算不确定特征图;从次,构造特征向量解码器,计算估计深度图;和地面真实值计算混合损失;最后,根据估计深度图和地面真实值计算混合损失,即可获得精确的深度图。本发明既能解决现有基于自监督的单目图像深度估计方法在处理大规模室外环境条件恶劣图像数据时所产生的远距离信息感知不足问题,又能提高估计深度的工作效率,为大规模室外环境条件恶劣图像数据在深度估计领域的应用以及三维立体重建和视觉导航技术的发展奠定了重要基础。

    基于手动特征伪装的热图像深度估计方法

    公开(公告)号:CN119559230A

    公开(公告)日:2025-03-04

    申请号:CN202410426737.3

    申请日:2024-04-10

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于手动特征伪装的热图像深度估计方法,首先输入原始热图像和相机内部参数;然后,计算得到加强热图像;其次,构造特征提取编码器、计算热图像特征图及其集合;再次,构造特征伪装结构,计算不确定特征图;从次,构造特征向量解码器,计算估计深度图;和地面真实值计算混合损失;最后,根据估计深度图和地面真实值计算混合损失,即可获得精确的深度图。本发明既能解决现有基于自监督的单目图像深度估计方法在处理大规模室外环境条件恶劣图像数据时所产生的远距离信息感知不足问题,又能提高估计深度的工作效率,为大规模室外环境条件恶劣图像数据在深度估计领域的应用以及三维立体重建和视觉导航技术的发展奠定了重要基础。

Patent Agency Ranking