-
公开(公告)号:CN115730684A
公开(公告)日:2023-03-03
申请号:CN202211575606.9
申请日:2022-12-09
Applicant: 安徽大学
IPC: G06N20/00 , G06N3/08 , G06F18/25 , G06F18/211 , G06N3/0464 , G06N3/0442
Abstract: 本发明公开了一种基于LSTM‑CNN模型的空气质量检测系统,属于空气质量检测领域,包括回归学习系统、构建学习模型系统、快速预报系统、发布模块和数据检测系统,所述回归学习系统包括环境数据模块、参数变量模块和数据筛选模块,所述数据筛选模块用于对环境数据模块进行特征选择。本发明所述的一种基于LSTM‑CNN模型的空气质量检测系统,本方案基于机器学习技术的区域空气质量预报系统能够高时效地利用现有的所有信息来定义一个最大可能精准的大气运动状态,本方案在空气质量预报预警中对于PM2.5和臭氧结果进行了优化,本方案能够弥补卫星观测数据的缺失,扩展垂直廓线的遥感观测,从有限点位的观测数据中挖掘出内蕴的变化规律。