基于细粒度图像的多任务卷积神经网络的图像隐写分析方法

    公开(公告)号:CN110503157B

    公开(公告)日:2021-11-19

    申请号:CN201910797717.6

    申请日:2019-08-27

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于细粒度图像的多任务卷积神经网络的图像隐写分析方法,其步骤包括:1获取数据集,对数据集进行处理;2搭建多任务卷积神经网络模型;3训练多任务卷积神经网络;4利用训练好的网络模型对其他测试集图像进行隐写分析,以此判断图像是否为载密图像。本发明首次将显著性检测技术和隐写分析相结合,把提取的细粒度图像作为输入,采用并行训练的方式已达到共享数据源中的不同信息,同时通过修改卷积核的步长从而没有使用池化操作,从而避免了图像特征的丢失,提高了网络的检测精度。

    基于细粒度图像的多任务卷积神经网络的图像隐写分析方法

    公开(公告)号:CN110503157A

    公开(公告)日:2019-11-26

    申请号:CN201910797717.6

    申请日:2019-08-27

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于细粒度图像的多任务卷积神经网络的图像隐写分析方法,其步骤包括:1获取数据集,对数据集进行处理;2搭建多任务卷积神经网络模型;3训练多任务卷积神经网络;4利用训练好的网络模型对其他测试集图像进行隐写分析,以此判断图像是否为载密图像。本发明首次将显著性检测技术和隐写分析相结合,把提取的细粒度图像作为输入,采用并行训练的方式已达到共享数据源中的不同信息,同时通过修改卷积核的步长从而没有使用池化操作,从而避免了图像特征的丢失,提高了网络的检测精度。

Patent Agency Ranking