-
公开(公告)号:CN109035196A
公开(公告)日:2018-12-18
申请号:CN201810498275.0
申请日:2018-05-22
Applicant: 安徽大学
CPC classification number: G06T7/0002 , G06N3/0454 , G06N3/084 , G06T7/11 , G06T2207/20028 , G06T2207/20081
Abstract: 针对清晰的纹理平坦区域由于缺乏高频信息,而容易被误检成模糊区域的问题,本发明提出了一基于显著性的图像局部模糊检测方法:将代表图像变换域特征的奇异值向量,反映图像高频信息的局部极值点与熵加权的池化DCT高频系数(HiFST系数)相结合,这两种类型的特征值相互补充,得到更好的特征向量,将得到的混合特征向量输入到BP神经网络进行训练得到模型后,通过预测得到初步结果,再与图像显著性检测相结合,通过图像的显著性约束得到进一步的检测结果,并通过双边滤波优化边缘信息得到最终的结果。在一个公开的大型数据集上进行的定性定量实验结果表明,本方法具有很好的模糊检测效果。
-
公开(公告)号:CN109035196B
公开(公告)日:2022-07-05
申请号:CN201810498275.0
申请日:2018-05-22
Applicant: 安徽大学
Abstract: 针对清晰的纹理平坦区域由于缺乏高频信息,而容易被误检成模糊区域的问题,本发明提出了一基于显著性的图像局部模糊检测方法:将代表图像变换域特征的奇异值向量,反映图像高频信息的局部极值点与熵加权的池化DCT高频系数(HiFST系数)相结合,这两种类型的特征值相互补充,得到更好的特征向量,将得到的混合特征向量输入到BP神经网络进行训练得到模型后,通过预测得到初步结果,再与图像显著性检测相结合,通过图像的显著性约束得到进一步的检测结果,并通过双边滤波优化边缘信息得到最终的结果。在一个公开的大型数据集上进行的定性定量实验结果表明,本方法具有很好的模糊检测效果。
-