-
公开(公告)号:CN116269439A
公开(公告)日:2023-06-23
申请号:CN202310131929.7
申请日:2023-02-18
Applicant: 复旦大学
IPC: A61B5/372
Abstract: 本发明属于癫痫性脑病辅助诊断技术领域,具体为睡眠中癫痫性电持续状态棘慢波指数自动量化方法。本发明首先获取ESES患者脑电图EEG记录数据,然后将原始的EEG数据处理为多个短窗口样本,用多个预设时间长度的缺省窗口对样本进行分割,随后通过卷积神经网络对原始信号进行空间滤波并提取信号的多维度时间特征,最终实现对NREM时期潜在棘波和棘慢波的分类和定位,实现对SWI的自动量化。本发明通过预设缺省窗口与多重特征卷积神经网络结合,可同时对不同持续时间的棘波和棘慢波进行自动检测。
-
公开(公告)号:CN116421144A
公开(公告)日:2023-07-14
申请号:CN202310119357.0
申请日:2023-02-15
Applicant: 复旦大学
IPC: A61B5/00 , G16H50/30 , G16H50/20 , G06N3/0442 , G06N3/0464 , G06N3/042 , G06N3/08 , A61B5/369 , A61B5/372
Abstract: 本发明属于癫痫性脑病辅助诊断技术领域,具体为一种ESES相关癫痫性脑病自动量化和预后评估模型及其训练和使用方法。本发明脑病自动量化和预后评估模型包括脑网络特征提取模块、脑电深度特征提取模块以及识别诊断模块;脑网络特征提取模块包括计算模块、图卷积神经网络、注意力机制网络,得到脑网络图论特征和图谱特征,并将两者融合得到数据片段间状态转换的信息;脑电深度特征提取模块用于提取脑电深度特征;识别诊断模块用于将由脑电深度特征提取模块提取的脑网络特征和由脑电深度特征提取模块提取的脑电深度特征进行融合,并进行ESES特征波的识别以及预后等级的评估。本发明不仅实现对ESES自动量化,还实现对ESES相关癫痫性脑病预后评估,从而大幅提高ESES诊疗效率。
-