-
公开(公告)号:CN106291281A
公开(公告)日:2017-01-04
申请号:CN201610642472.6
申请日:2016-08-08
Applicant: 国网上海市电力公司 , 华东电力试验研究院有限公司 , 上海交通大学
Abstract: 本发明公开了一种变电站设备局部放电定位系统,其包含:特高频传感器,设置在被测区域中,采集被测区域中局部放电产生的特高频信号;数据分析与处理单元,其与所述的特高频传感器连接,根据特高频传感器采集到的特高频信号并结合相应位置坐标建立RSSI指纹图,运用BP神经网络算法进行布局放电定位。其优点是:基于RSSI指纹图谱技术,利用特高频信号作为特征量,结合神经网络算法和粒子群算法实现变电站设备局部放电定位,从而实现基于RSSI指纹图谱的局部放电定位,该系统对于硬件的要求较小,易于实现,并且具有较高的精确度,降低了变电站局部放电定位的难度,有效提高了检测效率。
-
-
公开(公告)号:CN111308424A
公开(公告)日:2020-06-19
申请号:CN202010133541.7
申请日:2020-02-26
IPC: G01S5/22
Abstract: 本发明公开了一种基于相加求和与MUSI C联合算法的变电站设备可听声源定位方法,采用该方法需要在变电站设备前设置由声音传感器阵元组成的阵列,通过接收声音传感器阵元的信号以及变电站设备的远场窄带声音信号,通过基于相加求和与MUSI C算法的联合算法,从而能够高效和精确的得到的变电站设备声源定位结果。
-
公开(公告)号:CN106526434A
公开(公告)日:2017-03-22
申请号:CN201610885075.1
申请日:2016-10-11
Applicant: 国网上海市电力公司 , 华东电力试验研究院有限公司 , 上海交通大学
IPC: G01R31/12
CPC classification number: G01R31/1227
Abstract: 本发明公开了一种局部放电模式的识别方法和装置,该方法包含如下步骤:S1,获取预设采样时长内电力设备的局部放电信号;S2,将预设采样时长均分成含有N个采样点的T个时间间隔,统计所述局部放电信号在每个所述时间间隔内的局部放电信息;S3,对各个局部放电信息进行处理,获得局部放电信息特征矩阵;S4,依据预设模式识别算法,识别所述局部放电信息特征矩阵对应的放电模式。本发明采集局部放电信号构造随机矩阵,通过神经网络来识别局部放电信号的随机矩阵谱分布,进而实现对不同类型局部放电信号的识别。
-
-
公开(公告)号:CN110334948A
公开(公告)日:2019-10-15
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334865A
公开(公告)日:2019-10-15
申请号:CN201910602682.6
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种基于卷积神经网络的电力设备故障率预测方法,其包括训练步骤和预测步骤,其中,训练步骤包括:(1)收集电力设备的案例PRPS图谱;(2)对收集的案例PRPS图谱数据进行预处理;(3)构建第一卷积神经网络模块,并对第一卷积神经网络模块进行训练,以使其输出为案例PRPS图谱数据对应的缺陷类型;(4)基于缺陷类型构建各个缺陷类型的数据集;(5)对应各个缺陷类型分别构建各自的故障二分类子模块,其中每一个故障二分类子模块均基于第二卷积神经网络模块而构建;训练第二卷积神经网络,以使各故障二分类子模块基于案例PRPS图谱数据所得到发生故障的概率值,而输出电力设备是否发生故障的判断。
-
公开(公告)号:CN110008964A
公开(公告)日:2019-07-12
申请号:CN201910241551.X
申请日:2019-03-28
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06K9/46
Abstract: 本发明公开了一种高效的异源图像的角点特征提取与描述方法,对于特征相似度较低的异源图像,先采用FAST方法提取图像中的结构性特征较为显著的角点,再采用PIIFD特征描述符考虑异源图像的梯度翻转效应,对角点特征进行统一的描述。本发明技术解决方案简单,鲁棒性高,实用性强,不易受图像品质的影响,能克服异源图像特征差异较大、特征较为模糊、图像噪声干扰较大等问题,可以很好地解决目前主要特征提取方法在处理异源图像时特征提取准确率低、特征显著性低、计算复杂度高、可靠性差的问题。
-
公开(公告)号:CN110334948B
公开(公告)日:2023-04-07
申请号:CN201910602681.1
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
IPC: G06Q10/0635 , G06Q10/0639 , G06Q50/06 , G06F18/214 , G01R31/12
Abstract: 本发明公开了一种基于特征量预测的电力设备局部放电严重程度评估方法,其包括训练步骤和评估步骤,其中:训练步骤包括:(1)收集电力设备的案例PRPS图谱数据;(2)对收集的案例PRPS图谱数据进行预处理;(3)采用自编码器提取的案例PRPS图谱数据的局部放电特征向量;(4)构建门控循环单元模块,输入局部放电特征向量以对其进行训练,以使其输出预测局部放电特征向量;(5)构建基于卷积神经网络的故障二分类模块,采用预测局部放电特征向量作为输入以对其进行训练,以使其基于预测局部放电特征向量所表征的故障概率值而输出该预测局部放电特征向量是否表征电力设备故障的判断。
-
公开(公告)号:CN110334866B
公开(公告)日:2022-11-11
申请号:CN201910602683.0
申请日:2019-07-05
Applicant: 上海交通大学 , 上海交通大学烟台信息技术研究院
Abstract: 本发明公开了一种考虑绝缘缺陷类别与故障关联性的电力设备故障概率预测方法,其包括步骤:(1)采集电力设备的PRPS图谱数据并对其进行预处理;(2)基于经过预处理的PRPS图谱数据提取局部放电特征;(3)将局部放电特征输入经过训练的卷积神经网络,经过训练的卷积神经网络输出电力设备具有某类绝缘缺陷的概率值P(Dk);并且还将局部放电特征输入经过训练的长短时记忆神经网络,经过训练的长短时记忆神经网络输出电力设备在Dk的条件下发生故障的概率P(F|Dk);(4)基于下述公式获得电力设备的最终故障概率P(F):此外,本发明还公开了一种电力设备故障概率预测系统。
-
-
-
-
-
-
-
-
-