基于特征工程和表示学习的机器行为识别方法

    公开(公告)号:CN113608946B

    公开(公告)日:2023-09-12

    申请号:CN202110910834.6

    申请日:2021-08-10

    Abstract: 基于特征工程和表示学习的机器行为识别方法,由三个步骤构成:步骤一,对大数据进行分析,通过时间、频次等多维度的信息,建立3σ模型,用于确定机器行为的访问时间频段,在机器行为的访问时间频段下,通过分组聚合等方式,归纳总结提取出基于机器行为的特征;步骤二,并通过查阅API文档、软件模拟复现、官方的RFC文档等方式对行为进行定义和命名,整合成一组完备的机器行为特征,完成基于特征工程机器行为识别工作;步骤三,对识别效果不佳的模型加入与其他行为存在交集的特征,去排除其他行为,以提高准确率。

    一种多源数据映射关联细粒度不良信息检测方法

    公开(公告)号:CN116680419A

    公开(公告)日:2023-09-01

    申请号:CN202310955604.0

    申请日:2023-08-01

    Abstract: 本发明涉及自然语言处理技术领域,提供一种多源数据映射关联细粒度不良信息检测方法,所述方法包括:获取待检测文本和历史浏览文本,待检测文本和历史浏览文本属于同一用户的浏览文本;对待检测文本进行实体关系抽取,得到待检测三元组;获取历史浏览文本中的不良信息所对应的历史三元组,并基于历史三元组与待检测三元组之间的关联度,从待检测三元组中确定出待检测文本中的不良信息所对应的三元组。本发明提供的一种多源数据映射关联细粒度不良信息检测方法,能够准确从待检测三元组中确定出待检测文本中的不良信息所对应的三元组,避免传统方法中分词演变绕过黑名单机制导致漏检的问题,进一步提高的不良信息的检测精度。

    一种基于频域信息与多任务学习的深度伪造视频鉴别方法

    公开(公告)号:CN115187891A

    公开(公告)日:2022-10-14

    申请号:CN202210585640.8

    申请日:2022-05-27

    Abstract: 本发明涉及一种基于频域信息与多任务学习的深度伪造视频鉴别方法,使用频域分析中的离散余弦变换,结合分块处理的方式保留部分RGB三通道图像的空间信息,得到频域特征作为输入数据;使用多任务学习的深度神经网络提取输入数据的特征,将Xception网络作为骨干网络模块,并设计基于反卷积运算的分割模块与基于特征融合的分类模块,将骨干网络模块与分割模块提取的特征融合;同时设计优化训练引导目标算法,将融合后的特征间关系转化为三维条件下的几何距离,通过优化训练引导目标算法完成多任务学习的深度神经网络模型的训练,得到深度伪造视频鉴别模型,完成深度伪造视频的鉴别。

    基于特征工程和表示学习的机器行为识别方法

    公开(公告)号:CN113608946A

    公开(公告)日:2021-11-05

    申请号:CN202110910834.6

    申请日:2021-08-10

    Abstract: 基于特征工程和表示学习的机器行为识别方法,由三个步骤构成:步骤一,对大数据进行分析,通过时间、频次等多维度的信息,建立3σ模型,用于确定机器行为的访问时间频段,在机器行为的访问时间频段下,通过分组聚合等方式,归纳总结提取出基于机器行为的特征;步骤二,并通过查阅API文档、软件模拟复现、官方的RFC文档等方式对行为进行定义和命名,整合成一组完备的机器行为特征,完成基于特征工程机器行为识别工作;步骤三,对识别效果不佳的模型加入与其他行为存在交集的特征,去排除其他行为,以提高准确率。

Patent Agency Ranking