一种具有隐私保护的K-means聚类方法及系统

    公开(公告)号:CN107145791B

    公开(公告)日:2020-07-10

    申请号:CN201710224275.7

    申请日:2017-04-07

    Abstract: 本发明提供一种具有隐私保护的K‑means聚类方法及系统,属于数据挖掘技术领域。本发明包括如下步骤:数据拥有者A和B加密各自的数据和随机选择的质心点,上传至服务器;服务器通过安全乘法协议和安全距离计算协议在密文数据中计算数据点到质心点的欧氏距离,并将数据点归类;服务器、数据拥有者A和B通过安全电路协议共同在密文数据中重新计算新的质心点;数据拥有者A或B通过安全比较协议判断新的质心点与原质心点的距离,如果小于阈值,结束分类,数据拥有者A和B请求服务器将分类好的数据分别发送给数据拥有者A和B,否则,重新上传新的质心点,进行下一轮迭代。本发明在保证数据隐私安全的同时保证了数据挖掘结果的正确性;支持数据存储外包和数据计算外包,在保证正确性的同时,执行效率也大幅度提升;支持三个参与方中最多一方为恶意方的安全计算。

    一种具有隐私保护的K‑means聚类方法及系统

    公开(公告)号:CN107145791A

    公开(公告)日:2017-09-08

    申请号:CN201710224275.7

    申请日:2017-04-07

    CPC classification number: G06F21/6245 G06K9/6223 H04L63/0428 H04L67/10

    Abstract: 本发明提供一种具有隐私保护的K‑means聚类方法及系统,属于数据挖掘技术领域。本发明包括如下步骤:数据拥有者A和B加密各自的数据和随机选择的质心点,上传至服务器;服务器通过安全乘法协议和安全距离计算协议在密文数据中计算数据点到质心点的欧氏距离,并将数据点归类;服务器、数据拥有者A和B通过安全电路协议共同在密文数据中重新计算新的质心点;数据拥有者A或B通过安全比较协议判断新的质心点与原质心点的距离,如果小于阈值,结束分类,数据拥有者A和B请求服务器将分类好的数据分别发送给数据拥有者A和B,否则,重新上传新的质心点,进行下一轮迭代。本发明在保证数据隐私安全的同时保证了数据挖掘结果的正确性;支持数据存储外包和数据计算外包,在保证正确性的同时,执行效率也大幅度提升;支持三个参与方中最多一方为恶意方的安全计算。

Patent Agency Ranking