-
公开(公告)号:CN106878674A
公开(公告)日:2017-06-20
申请号:CN201710016093.0
申请日:2017-01-10
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明提出了一种鲁棒性比较强的基于监控视频的停车检测方法,基于前景历史像素点和图像相似度进行静止目标检测,主要包括混合高斯模型提取前景运动目标、通过可疑静止像素矩阵得到可疑静止目标区域、图像相似度的计算。在车辆识别阶段,对Haar分类器进行了改进,使得其在级联强分类器训练时避免出现训练过程滞停,可以保证在训练过程中避免出现滞停现象,使得级联强分类器训练鲁棒性增强。在车辆检测过程中,只将通过静止目标检测得到的静止目标区域和其邻域放到Haar分类器进行检测,而不是将整张图像放入Haar分类器检测,这样可以大大减少计算量,提高算法的实时性。另外,还采用基于混合高斯模型的遮挡检测解决暂时性遮挡的问题,降低算法的漏检率。
-
公开(公告)号:CN106878674B
公开(公告)日:2019-08-30
申请号:CN201710016093.0
申请日:2017-01-10
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明提出了一种鲁棒性比较强的基于监控视频的停车检测方法,基于前景历史像素点和图像相似度进行静止目标检测,主要包括混合高斯模型提取前景运动目标、通过可疑静止像素矩阵得到可疑静止目标区域、图像相似度的计算。在车辆识别阶段,对Haar分类器进行了改进,使得其在级联强分类器训练时避免出现训练过程滞停,可以保证在训练过程中避免出现滞停现象,使得级联强分类器训练鲁棒性增强。在车辆检测过程中,只将通过静止目标检测得到的静止目标区域和其邻域放到Haar分类器进行检测,而不是将整张图像放入Haar分类器检测,这样可以大大减少计算量,提高算法的实时性。另外,还采用基于混合高斯模型的遮挡检测解决暂时性遮挡的问题,降低算法的漏检率。
-
公开(公告)号:CN107704877B
公开(公告)日:2020-05-29
申请号:CN201710928967.X
申请日:2017-10-09
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明提供了一种基于深度学习的图像隐私感知方法,包括以下步骤:S1、构建带类别标注的隐私分类数据集,使用迁移学习的方法训练隐私感知网络;S2、使用面向隐私感知的深度卷积神经网络完成隐私图像的识别;S3、根据神经网络深层卷积特征提取注意力分布图,并定位注意力集中区域完成对图像隐私区域的感知。本发明的有益效果是:基于深度神经网络完成了端到端的训练和测试,可以准确地区分隐私图像并定位图像中的隐私区域,方便对图像中的隐私信息进行选择性保护。
-
公开(公告)号:CN107704877A
公开(公告)日:2018-02-16
申请号:CN201710928967.X
申请日:2017-10-09
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明提供了一种基于深度学习的图像隐私感知方法,包括以下步骤:S1、构建带类别标注的隐私分类数据集,使用迁移学习的方法训练隐私感知网络;S2、使用面向隐私感知的深度卷积神经网络完成隐私图像的识别;S3、根据神经网络深层卷积特征提取注意力分布图,并定位注意力集中区域完成对图像隐私区域的感知。本发明的有益效果是:基于深度神经网络完成了端到端的训练和测试,可以准确地区分隐私图像并定位图像中的隐私区域,方便对图像中的隐私信息进行选择性保护。
-
-
-