-
公开(公告)号:CN114970239A
公开(公告)日:2022-08-30
申请号:CN202210469070.6
申请日:2022-04-29
Applicant: 哈尔滨工业大学
IPC: G06F30/23 , G06F30/27 , G06N3/04 , G06N3/08 , G06N7/00 , G06F111/04 , G06F111/08
Abstract: 本发明提出一种基于贝叶斯系统识别和启发式深度强化学习的多类型监测数据测点布置方法、设备及介质。涉及结构健康监测和随机振动领域。首先,根据工程结构设计信息并依据动力学和随机振动理论建立多类型测点布置的目标函数,随后利用基于深度强化学习及启发式思想的多类型监测数据测点布置优化算法对结构监测数据测点布置进行优化得到最终布置方案。本发明结合了深度强化学习和启发式思想,用于离散的测点优化布置问题,能够较好避免陷入局部最优问题,获得良好的优化效果,可以为多类型监测数据的测点优化布置提供有效的决策支持。此外,该优化算法亦可用于其他类似组合优化问题。
-
公开(公告)号:CN115618273B
公开(公告)日:2023-06-30
申请号:CN202211121446.0
申请日:2022-09-15
Applicant: 哈尔滨工业大学 , 中铁第四勘察设计院集团有限公司 , 中国铁建股份有限公司
IPC: G06F18/241 , G06F18/214 , G06F18/21 , G06N3/042 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08 , G01D21/02
Abstract: 本发明提出一种基于并行图卷积神经网络的铁路轨道状态评估方法及系统。所述方法包括选择数据异常识别通道和数据整理、并行图卷积神经网络模型设计、训练模型并利用模型预测、通过预测结果判断数据异常情况以及利用有向图分析修正预测结果、根据异常结果对铁路轨道状态进行评估。本发明是针对铁路轨道异常状态评估的方法,利用多个并行图卷积层对数据进行图卷积运算并在融合层进行融合,预测结果不会过度依赖单个测点,提高了预测精度。若出现异常漂移数据,可以利用有向图进行分析,对预测结果进行修正。所述方法具有预测结果受异常数据影响小以及统一利用多种类型传感器类型数据实现铁路轨道状态评估等优势。
-
公开(公告)号:CN114970239B
公开(公告)日:2023-06-30
申请号:CN202210469070.6
申请日:2022-04-29
Applicant: 哈尔滨工业大学
IPC: G06F30/23 , G06F30/27 , G06N3/04 , G06N3/08 , G06N7/00 , G06F111/04 , G06F111/08
Abstract: 本发明提出一种基于贝叶斯系统识别和启发式深度强化学习的多类型监测数据测点布置方法、设备及介质。涉及结构健康监测和随机振动领域。首先,根据工程结构设计信息并依据动力学和随机振动理论建立多类型测点布置的目标函数,随后利用基于深度强化学习及启发式思想的多类型监测数据测点布置优化算法对结构监测数据测点布置进行优化得到最终布置方案。本发明结合了深度强化学习和启发式思想,用于离散的测点优化布置问题,能够较好避免陷入局部最优问题,获得良好的优化效果,可以为多类型监测数据的测点优化布置提供有效的决策支持。此外,该优化算法亦可用于其他类似组合优化问题。
-
公开(公告)号:CN115618273A
公开(公告)日:2023-01-17
申请号:CN202211121446.0
申请日:2022-09-15
Applicant: 哈尔滨工业大学 , 中铁第四勘察设计院集团有限公司 , 中国铁建股份有限公司
IPC: G06F18/241 , G06F18/214 , G06F18/21 , G06N3/042 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08 , G01D21/02
Abstract: 本发明提出一种基于并行图卷积神经网络的铁路轨道状态评估方法及系统。所述方法包括选择数据异常识别通道和数据整理、并行图卷积神经网络模型设计、训练模型并利用模型预测、通过预测结果判断数据异常情况以及利用有向图分析修正预测结果、根据异常结果对铁路轨道状态进行评估。本发明是针对铁路轨道异常状态评估的方法,利用多个并行图卷积层对数据进行图卷积运算并在融合层进行融合,预测结果不会过度依赖单个测点,提高了预测精度。若出现异常漂移数据,可以利用有向图进行分析,对预测结果进行修正。所述方法具有预测结果受异常数据影响小以及统一利用多种类型传感器类型数据实现铁路轨道状态评估等优势。
-
-
-