-
公开(公告)号:CN103441798B
公开(公告)日:2015-10-28
申请号:CN201310381838.5
申请日:2013-08-28
Applicant: 哈尔滨工业大学
IPC: H04B10/118 , H04B10/07
Abstract: 在轨空间光通信终端像差补偿方法,涉及在轨空间光通信终端像差补偿方法。它为了解决现有的空间光通信终在轨运行期间产生新的像差导致通信链路的中断的问题。在地面测试模拟阶段对空间光通信终端中各种可能产生的像差及其对应的光斑质心定位的影响进行模拟测量,在轨修正阶段通过比较地面主控中心接收到的数据与地面测试模拟阶段存储的所有数据,选择与在轨的空间光通信终端数据相似的数据作为成像测试结果,根据该结果计算相应的像差修正参数,实现对空间光通信终端的在轨运行修正,本发明提高了终端角探测精度,达到了保证了空间光通信终在轨运行期间通信链路正常运行的目的。本发明适用于航空、航天和通信领域。
-
公开(公告)号:CN103427904B
公开(公告)日:2015-08-19
申请号:CN201310381686.9
申请日:2013-08-28
Applicant: 哈尔滨工业大学
IPC: H04B10/118 , H04B10/07 , H04B10/58
Abstract: 基于地面测试的空间光通信终端的像差补偿方法,本发明涉及基于地面测试的空间光通信终端的像差补偿方法。它为了解决由于加工及装调工艺的限制,存在于空间光通信终端的像差对终端角探测精度的影响,对空间光通信产生影响的问题。该像差补偿方法通过二维微动平台、二维微动平台驱动器、主控计算机、空间光调制器驱动器、空间光调制器、第二分光棱镜、波前传感器、编码器、平行光管和半导体激光器,实现了对光斑的质心坐标的测量,并根据该测量结果对像差进行补偿,提高终端角探测精度,由于角探测精度是靠光斑质心定位精度决定的,从而保证了空间光通信过程中通信链路正常运行的目的。本发明适用于航空和通信等领域。
-
公开(公告)号:CN103441798A
公开(公告)日:2013-12-11
申请号:CN201310381838.5
申请日:2013-08-28
Applicant: 哈尔滨工业大学
IPC: H04B10/118 , H04B10/07
Abstract: 在轨空间光通信终端像差补偿方法,涉及在轨空间光通信终端像差补偿方法。它为了解决现有的空间光通信终在轨运行期间产生新的像差导致通信链路的中断的问题。在地面测试模拟阶段对空间光通信终端中各种可能产生的像差及其对应的光斑质心定位的影响进行模拟测量,在轨修正阶段通过比较地面主控中心接收到的数据与地面测试模拟阶段存储的所有数据,选择与在轨的空间光通信终端数据相似的数据作为成像测试结果,根据该结果计算相应的像差修正参数,实现对空间光通信终端的在轨运行修正,本发明提高了终端角探测精度,达到了保证了空间光通信终在轨运行期间通信链路正常运行的目的。本发明适用于航空、航天和通信领域。
-
公开(公告)号:CN103427904A
公开(公告)日:2013-12-04
申请号:CN201310381686.9
申请日:2013-08-28
Applicant: 哈尔滨工业大学
IPC: H04B10/118 , H04B10/07 , H04B10/58
Abstract: 基于地面测试的空间光通信终端的像差补偿方法,本发明涉及基于地面测试的空间光通信终端的像差补偿方法。它为了解决由于加工及装调工艺的限制,存在于空间光通信终端的像差对终端角探测精度的影响,对空间光通信产生影响的问题。该像差补偿方法通过二维微动平台、二维微动平台驱动器、主控计算机、空间光调制器驱动器、空间光调制器、第二分光棱镜、波前传感器、编码器、平行光管和半导体激光器,实现了对光斑的质心坐标的测量,并根据该测量结果对像差进行补偿,提高终端角探测精度,由于角探测精度是靠光斑质心定位精度决定的,从而保证了空间光通信过程中通信链路正常运行的目的。本发明适用于航空和通信等领域。
-
-
-