一种基于蜂群算法的遥感影像有理函数模型结构优化方法

    公开(公告)号:CN103927456B

    公开(公告)日:2017-01-04

    申请号:CN201410169422.1

    申请日:2014-04-25

    Abstract: 一种基于蜂群算法的遥感影像有理函数模型优化方法,涉及遥感成像几何模型优化领域。针对基于有理函数模型的遥感成像几何模型因参数项过冗余造成的模型精度低问题,用蜂群算法对该模型进行优化,步骤如下:一、构造待求解的二值向量x和收益度函数f(x);二、初始化蜂群算法参数;三、蜂群初始化;四、开始迭代,E蜂优化;五、计算E蜂招募概率;六、O蜂优化;七、更新全局最优解;八、判断迭代终止条件,若满足,优化完成;反之进行步骤九;九、判断各解是否满足S蜂启动条件,若不满足,返回步骤四;若满足,进行步骤十;十、启动S蜂,产生一个新解替换原解,返回步骤四。该方法能简化遥感成像几何模型结构,使其更准确地逼近成像几何关系。

    一种基于蜂群算法的遥感影像有理函数模型结构优化方法

    公开(公告)号:CN103927456A

    公开(公告)日:2014-07-16

    申请号:CN201410169422.1

    申请日:2014-04-25

    Abstract: 一种基于蜂群算法的遥感影像有理函数模型优化方法,涉及遥感成像几何模型优化领域。针对基于有理函数模型的遥感成像几何模型因参数项过冗余造成的模型精度低问题,用蜂群算法对该模型进行优化,步骤如下:一、构造待求解的二值向量x和收益度函数f(x);二、初始化蜂群算法参数;三、蜂群初始化;四、开始迭代,E蜂优化;五、计算E蜂招募概率;六、O蜂优化;七、更新全局最优解;八、判断迭代终止条件,若满足,优化完成;反之进行步骤九;九、判断各解是否满足S蜂启动条件,若不满足,返回步骤四;若满足,进行步骤十;十、启动S蜂,产生一个新解替换原解,返回步骤四。该方法能简化遥感成像几何模型结构,使其更准确地逼近成像几何关系。

    基于非负低秩稀疏关联制图的遥感图像分割方法

    公开(公告)号:CN106023221A

    公开(公告)日:2016-10-12

    申请号:CN201610363558.5

    申请日:2016-05-27

    CPC classification number: G06K9/6223 G06T2207/10032 G06T2207/20112

    Abstract: 基于非负低秩稀疏关联制图的遥感图像分割方法,属于遥感图像处理领域,本发明为解决高分辨率遥感图像纹理信息的高同质性导致遥感图像分割精度低的问题。本发明图像分割方法具体过程为:对遥感图像进行量化处理:将待处理输入图像利用K‑均值聚类的分类方法根据图像灰度级范围进行量化处理;提取图像纹理信息的局部直方图特征;对局部直方图特征矩阵l1/2范数约束进行低秩分解;构建低秩稀疏关联制图;利用关联制图约束的非负矩阵参数化方法分割特征矩阵,对于非负矩阵参数化方法分解的权重矩阵,通过去权卷积的方法在权重矩阵中寻找每个像素的特征向量所对应的类别最大权重,确定该像素所属的分割类别,实现图像分割。本发明用于遥感影像分割。

Patent Agency Ranking