一种基于自监督的多视角会话推荐桥接模型

    公开(公告)号:CN117933304B

    公开(公告)日:2024-06-28

    申请号:CN202410177123.6

    申请日:2024-02-08

    Abstract: 一种基于自监督的多视角会话推荐桥接模型,涉及会话推荐技术领域,本发明为了解决现有的会话推荐模型没有将基于序列和基于图的会话推荐方案进行整合,没有实现在整合图模式和序列模式的同时保留相应的特征以最大化单一模式优势并提高会话推荐模型整体性能,从图到序列的转换过程伴随着结构和会话间信息的丢失等问题。本发明利用自监督学习框架将基于序列和基于图的会话推荐这两种方案结合起来,将图模式和序列模式视为两个单独的通道,通过对比学习架构集成了上述两个通道。在DC‑Rec模型中,通过通道间对比桥接模块在会话中吸收图和序列知识。通过最大化两个通道之间的互信息,将两种模式信息进行了较为充分的融合。实验结果表明DC‑Rec始终优于其他最先进的会话推荐方法。

    一种基于自监督的多视角会话推荐桥接模型

    公开(公告)号:CN117933304A

    公开(公告)日:2024-04-26

    申请号:CN202410177123.6

    申请日:2024-02-08

    Abstract: 一种基于自监督的多视角会话推荐桥接模型,涉及会话推荐技术领域,本发明为了解决现有的会话推荐模型没有将基于序列和基于图的会话推荐方案进行整合,没有实现在整合图模式和序列模式的同时保留相应的特征以最大化单一模式优势并提高会话推荐模型整体性能,从图到序列的转换过程伴随着结构和会话间信息的丢失等问题。本发明利用自监督学习框架将基于序列和基于图的会话推荐这两种方案结合起来,将图模式和序列模式视为两个单独的通道,通过对比学习架构集成了上述两个通道。在DC‑Rec模型中,通过通道间对比桥接模块在会话中吸收图和序列知识。通过最大化两个通道之间的互信息,将两种模式信息进行了较为充分的融合。实验结果表明DC‑Rec始终优于其他最先进的会话推荐方法。

    一种基于传播范围自适应的协同过滤方法及系统

    公开(公告)号:CN117112923A

    公开(公告)日:2023-11-24

    申请号:CN202311012484.7

    申请日:2023-08-11

    Abstract: 一种基于传播范围自适应的协同过滤方法及系统,涉及推荐技术领域,用以区分推荐系统中实体不同属性的传播范围。针对细粒度的实体多属性以及自适应传播范围,定义PDA‑GNN模型为:该模型框架利用用户和物品交互背后的实体属性多样性来提高推荐性能,框架包含四个主要部分:嵌入层、卷积层、注意力层以及预测层;嵌入层将用户和物品的ID映射到密集的嵌入向量上,每个节点拥有多个属性嵌入,其中每个用户的嵌入数量与GNN的最大传播深度一致;接下来,卷积层完成节点嵌入的传播和聚集,形成图上的嵌入聚集过程;然后,注意力层计算每个节点的属性嵌入注意力系数,并将多个属性嵌入整合到最终的嵌入表示中;最后,预测层根据用户与物品的最终嵌入表示完成用户与物品之间交互得分的预测。实验结果证明本发明提出的PDA‑GNN模型性能优越。

Patent Agency Ranking