-
公开(公告)号:CN115112035A
公开(公告)日:2022-09-27
申请号:CN202210730788.6
申请日:2022-06-24
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院 , 中铁十七局集团有限公司
Abstract: 本发明公开了一种利用双目立体视觉技术测量降雨诱发滑坡三维变形的方法,所述方法包括如下步骤:步骤一、构建双目立体视觉系统并标定;步骤二、图像采集与图像处理;步骤三、标志点的识别和定位。本发明属于间接测量和非接触测量,可以确定测点的三维空间数据,并通过长时间连续监测得到测点的水平位移、垂直位移和三维空间位移,能够很好的用于降雨诱发滑坡体变形过程的定量化研究。该测量方法成本低廉,简单方便,精度高,时间快,可以连续测量,适用于条件恶劣的作业环境。
-
公开(公告)号:CN118309505A
公开(公告)日:2024-07-09
申请号:CN202410127960.8
申请日:2024-01-30
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院 , 中铁十七局集团第四工程有限公司
IPC: E21F17/18
Abstract: 本发明公开了一种采空区岩溶隧道施工信息多维立体感知与预警系统,所述感知系统包括信息智能采集系统、数据无线传输系统和数据分析预警系统,信息智能采集系统监测围护结构宏观位移、沉降、支撑轴力、应变、地下水位、水压监测、水质;数据无线传输系统将采集的数据存储在数据库,服务端根据客户端请求提供对数据查询、修改管理功能的响应,客户端向用户展示监测数据,提供操作入口;数据分析预警系统调用数据库中监测数据,综合考虑宏观位移、微观应变和水压水质多维信息,实现对采空区岩溶隧道施工期内易发生灾害进行监测,并提前发出报警信号。本发明能够实现采空区岩溶隧道施工危险预警,保护隧道内施工人员与公共财产安全。
-
公开(公告)号:CN115112035B
公开(公告)日:2025-04-11
申请号:CN202210730788.6
申请日:2022-06-24
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院 , 中铁十七局集团有限公司
Abstract: 本发明公开了一种利用双目立体视觉技术测量降雨诱发滑坡三维变形的方法,所述方法包括如下步骤:步骤一、构建双目立体视觉系统并标定;步骤二、图像采集与图像处理;步骤三、标志点的识别和定位。本发明属于间接测量和非接触测量,可以确定测点的三维空间数据,并通过长时间连续监测得到测点的水平位移、垂直位移和三维空间位移,能够很好的用于降雨诱发滑坡体变形过程的定量化研究。该测量方法成本低廉,简单方便,精度高,时间快,可以连续测量,适用于条件恶劣的作业环境。
-
公开(公告)号:CN115127510B
公开(公告)日:2025-03-25
申请号:CN202210730795.6
申请日:2022-06-24
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院 , 中铁十七局集团有限公司
Abstract: 本发明公开了一种水陆空三栖立体无人化多平台联动滑坡智能巡防系统,所述巡防系统包括信息获取系统、智能仓坞系统和监测预警系统,信息获取系统包括无人机、巡检机器狗和无人船艇;智能仓坞系统包括信息获取系统设备出入的自感应舱门、无线传输模块、无线充电平台;监测预警系统包括数据处理模块、三维建模模块、危险预测和预警模块,通过无人船艇、巡检机器狗和无人机获取所监测边坡的各项数据并通过无线传输模块发送至监测预警系统中,三维建模模块根据获取的信息建立边坡三维模型并对边坡的滑坡情况进行预测,危险预测和预警模块根据滑坡发生的概率值达到设置的限值时执行预警,从而对边坡进行多维度评价,提高边坡滑坡精准预警的精度。
-
公开(公告)号:CN115078693A
公开(公告)日:2022-09-20
申请号:CN202210729788.4
申请日:2022-06-24
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院 , 中铁十七局集团有限公司
Abstract: 本发明公开了一种基于深度学习的膨胀土边坡冻融裂缝深度的计算方法,所述方法包括如下步骤:步骤S1:采集电信号数据集;步骤S2:处理电信号数据;步骤S3:训练模型;步骤S4:验证与调优模型;步骤S5、应用模型。本发明可以对冻融循环作用下的膨胀土边坡裂缝深度进行检测识别,一旦发现异常情况,可以及时发现并补救。本发明利用了深度学习方法,结合交流激发极化法(SIP)技术对冻融循环作用下膨胀土裂隙深度进行测定,提高了膨胀土裂缝深度识别效率和精度。
-
公开(公告)号:CN116792107A
公开(公告)日:2023-09-22
申请号:CN202310784689.0
申请日:2023-06-29
Applicant: 哈尔滨工业大学 , 中铁十七局集团有限公司 , 中铁十二局集团有限公司 , 中交第一航务工程局有限公司 , 哈尔滨工业大学重庆研究院
Abstract: 一种软硬复合地层盾构掘进自适应抗偏载系统,属于隧道盾构施工技术领域。系统包括滚刀法向荷载测量与无线发射装置、刀盘转角位移测量与无线发射装置、中央控制器、自适应抗偏载推进系统;在滚刀刀箱侧板的滚刀安装槽设置压电荷载监测装置,压电荷载监测装置获得的电信号通过无线发射装置进行传输;在刀盘旋转轴位置安装角位移传感器,角位移传感器信号通过无线发射装置进行传输;中央控制器包括滚刀法向荷载信号无线接收装置、角位移传感器信号无线接收装置、监测数据实时显示系统、偏载计算系统、推进系统控制系统;本发明可以对盾构机姿态进行定量的实时控制;盾构机偏载可以通过刀盘上的滚刀进行检测,且在中央控制器的显示器上实时显示。
-
公开(公告)号:CN115078693B
公开(公告)日:2024-12-17
申请号:CN202210729788.4
申请日:2022-06-24
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院 , 中铁十七局集团有限公司
IPC: G01N33/24 , G01B21/18 , G06F18/241 , G06F18/214 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于深度学习的膨胀土边坡冻融裂缝深度的计算方法,所述方法包括如下步骤:步骤S1:采集电信号数据集;步骤S2:处理电信号数据;步骤S3:训练模型;步骤S4:验证与调优模型;步骤S5、应用模型。本发明可以对冻融循环作用下的膨胀土边坡裂缝深度进行检测识别,一旦发现异常情况,可以及时发现并补救。本发明利用了深度学习方法,结合交流激发极化法(SIP)技术对冻融循环作用下膨胀土裂隙深度进行测定,提高了膨胀土裂缝深度识别效率和精度。
-
公开(公告)号:CN117491393A
公开(公告)日:2024-02-02
申请号:CN202311263196.9
申请日:2023-09-27
Applicant: 哈尔滨工业大学重庆研究院 , 哈尔滨工业大学 , 中铁十七局集团有限公司
Abstract: 本发明公开了一种基于探地雷达的混凝土质量智能无损检验方法,所述方法包括如下步骤:步骤S1、构建探地雷达数据集;步骤S2、处理雷达图像数据;步骤S3、训练模型;步骤S4、验证与调优模型;步骤S5、应用模型。本发明可以实现建筑混凝土内部裂纹、钢筋保护层厚度、钢筋间距等信息的无损智能检测,一旦发现异常情况,可以及时发现并补救。本发明利用了深度学习方法,结合探地雷达技术对建筑混凝土质量信息进行检测,提高了服役混凝土关键信息获取的效率。本发明不仅可以自动提取混凝土内部质量信息,而且在检测精度方面也取得了良好的效果,分辨率可达毫米级。本发明检测速度快、数据实时获取、探测深度可覆盖结构。
-
公开(公告)号:CN115127510A
公开(公告)日:2022-09-30
申请号:CN202210730795.6
申请日:2022-06-24
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院 , 中铁十七局集团有限公司
Abstract: 本发明公开了一种水陆空三栖立体无人化多平台联动滑坡智能巡防系统,所述巡防系统包括信息获取系统、智能仓坞系统和监测预警系统,信息获取系统包括无人机、巡检机器狗和无人船艇;智能仓坞系统包括信息获取系统设备出入的自感应舱门、无线传输模块、无线充电平台;监测预警系统包括数据处理模块、三维建模模块、危险预测和预警模块,通过无人船艇、巡检机器狗和无人机获取所监测边坡的各项数据并通过无线传输模块发送至监测预警系统中,三维建模模块根据获取的信息建立边坡三维模型并对边坡的滑坡情况进行预测,危险预测和预警模块根据滑坡发生的概率值达到设置的限值时执行预警,从而对边坡进行多维度评价,提高边坡滑坡精准预警的精度。
-
公开(公告)号:CN117309901A
公开(公告)日:2023-12-29
申请号:CN202311251750.1
申请日:2023-09-26
Applicant: 哈尔滨工业大学
IPC: G01N21/95 , H04N13/204 , G06V20/05 , G06V10/34 , G06V10/82 , G06V10/141 , G06T17/05 , G01N21/01 , G05D1/06 , E02D33/00
Abstract: 本发明公开了一种基于无人艇搭载立体相机检测水下桩质量的自动巡查装置,所述自动巡查装置包括水下搭载平台、环境感知模块、姿态控制模块、图像采集模块、数字图像处理模块、物理模型图像复原模块。本发明利用搭载于无人艇的立体相机进行水下桩混凝土开裂、混凝土剥落、钢管锈蚀典型缺陷目标体探测,主要用于服役期水下桩基质量检测、施工期水下桩基质量检测等各个领域,解决了已有水下桩基混凝土开裂、混凝土剥落、钢管锈蚀等典型缺陷目标检测技术中过于依靠人力、检测效率低、智能化程度低的缺点,能够有效提升水下桩基质量检测工作效率。
-
-
-
-
-
-
-
-
-