-
公开(公告)号:CN104979562A
公开(公告)日:2015-10-14
申请号:CN201510295648.0
申请日:2015-06-02
Applicant: 哈尔滨工业大学
IPC: H01M4/62 , H01M10/0525 , H01M4/131 , H01M4/1391 , H01M4/36
CPC classification number: H01M4/131 , H01M4/1391 , H01M4/366 , H01M4/625 , H01M10/0525
Abstract: 一种过放电能至0V的锂离子电池复合正极及其制备方法和应用,本发明涉及一种锂离子电池的正极材料,它要解决现有钴酸锂电池及其它3.45V以上高电压锂离子电池过放电到0V时储存容量损失严重以至失效的问题。该复合正极为钴酸锂层或尖晶石锰酸锂层/活性隔离层/磷酸铁锂层构成的叠层结构复合正极。制备方法是先将超级电容碳材料、导电剂、粘结剂与液体分散剂混合,制备隔离层浆料,隔离层浆料涂覆在正极片表面后烘干,再将磷酸铁锂浆料涂覆在活性隔离层表面,最后经烘干、压片。本发明复合正极中的活性隔离层能把表层磷酸铁锂与底层钴酸锂等活性物质有效隔离,使其允许过放电到0V和0V储存不失效,提高锂离子电池的耐用性。
-
公开(公告)号:CN101823689A
公开(公告)日:2010-09-08
申请号:CN201010109943.X
申请日:2010-02-20
Applicant: 哈尔滨工业大学
IPC: B82B3/00
Abstract: 一种制备多孔金属氧化物包覆碳纳米管复合材料的方法,它涉及一种制备金属氧化物/碳纳米管复合材料的方法。解决了多孔金属氧化物包覆碳纳米管复合材料现有的制备方法存在产量低、制备废液易造成F污染和通用性差的问题。本发明制备方法包括以下步骤:一、制金属氧化物前驱溶液;二、制碳纳米管分散液;三、制金属氧化物的聚合物前驱体包覆碳纳米管复合材料;四、金属氧化物的聚合物前驱体包覆碳纳米管复合材料经水分解或热解,即制备得到多孔金属氧化物包覆碳纳米管复合材料。本发明的制备工艺简单、产量高,制备得到多孔金属氧化物包覆碳纳米管复合材料在化学电源、光催化、气体和生物敏感等领域拥有潜在应用前景。
-
公开(公告)号:CN107256980B
公开(公告)日:2020-06-19
申请号:CN201710586267.7
申请日:2017-07-18
IPC: H01M10/0525 , H01M10/0567 , H01M10/058 , H01M10/42
Abstract: 本发明公开了一种提高锂离子电池耐过放电性能的方法,所述方法包括如下步骤:一、使用含有LiODFB和腈化合物的溶液对锂离子电池的负极进行表面电化学成膜化处理,或进行表面电化学成膜化和内部嵌锂化处理;二、使用步骤一预成膜后的负极,或使用步骤一预成膜且预嵌锂后的负极组装锂离子电池,并在锂离子电池的电解液中同时添加LiODFB和腈化合物。本发明的耐过放电方法兼顾了电池的负极固体/电解质界面膜和负极集流体长时间处于高电位的稳定性,因此可以提高锂离子电池的零伏存储性能,即提高锂离子电池耐受长时间处于零伏状态的能力。
-
公开(公告)号:CN105350054A
公开(公告)日:2016-02-24
申请号:CN201510829714.8
申请日:2015-11-25
Applicant: 哈尔滨工业大学
CPC classification number: C25D13/02 , C25D13/22 , H01M2/145 , H01M2/1646 , H01M2/1686
Abstract: 一种通过电泳沉积实现二次电池隔膜表面用纳米碳材料改性的方法。本发明涉及一种对二次电池隔膜表面用纳米碳材料改性的方法。本发明的目的是要解决现有涂覆法在制备超薄纳米碳层改性隔膜时隔膜底层暴露,以及现有喷涂法在制备薄纳米碳层改性隔膜时纳米碳层表面分布不均匀的问题。本发明方法的步骤是:一、制备稳定纳米碳材料分散液;二、电泳沉积;三、压制,得到纳米碳材料表面改性隔膜。本发明的方法可控性强,可精确调控单位面积隔膜上沉积纳米碳材料的量,同时可有效避免隔膜底层暴露和纳米碳层不均匀的问题。工艺过程简单,生产成本低。
-
公开(公告)号:CN112858440A
公开(公告)日:2021-05-28
申请号:CN202110155170.7
申请日:2021-02-04
Applicant: 哈尔滨工业大学
IPC: G01N27/414
Abstract: 本发明涉及一种肖特基二极管氢气传感器芯体。所述肖特基二极管氢气传感器芯体由四层结构和导电引线构成,四层结构依次是氢气裂解金属层、羟基扩散阻隔层、半导体层和集流体层,从氢气裂解金属层和集流体层分别引出导电引线。本发明中所述肖特基二极管氢气传感器芯体具有室温下抗湿度干扰的特殊性能,室温下气体环境中的水蒸气不会降低所述肖特基二极管氢气传感器芯体对氢气的灵敏度,克服了现有无羟基扩散阻隔层的普通氢气裂解金属层/半导体层肖特基二极管氢气传感器芯体在室温下湿度降低其氢敏性能的缺点。
-
公开(公告)号:CN105350054B
公开(公告)日:2017-12-08
申请号:CN201510829714.8
申请日:2015-11-25
Abstract: 一种通过电泳沉积实现二次电池隔膜表面用纳米碳材料改性的方法。本发明涉及一种对二次电池隔膜表面用纳米碳材料改性的方法。本发明的目的是要解决现有涂覆法在制备超薄纳米碳层改性隔膜时隔膜底层暴露,以及现有喷涂法在制备薄纳米碳层改性隔膜时纳米碳层表面分布不均匀的问题。本发明方法的步骤是:一、制备稳定纳米碳材料分散液;二、电泳沉积;三、压制,得到纳米碳材料表面改性隔膜。本发明的方法可控性强,可精确调控单位面积隔膜上沉积纳米碳材料的量,同时可有效避免隔膜底层暴露和纳米碳层不均匀的问题。工艺过程简单,生产成本低。
-
公开(公告)号:CN105514344A
公开(公告)日:2016-04-20
申请号:CN201510854496.3
申请日:2015-11-28
Applicant: 哈尔滨工业大学
IPC: H01M4/04 , H01M4/1391 , H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/0525 , C25D13/02 , C25D13/12
CPC classification number: H01M4/0452 , C25D13/02 , C25D13/12 , H01M4/1391 , H01M4/366 , H01M4/505 , H01M4/525 , H01M4/625 , H01M4/628 , H01M10/0525
Abstract: 本发明提供一种通过电泳沉积石墨烯实现锂离子电池阴极表面改性的方法,所述的改性方法是将石墨烯稳定分散液加入电泳池中,以涂覆好的锂离子电池阴极作为电泳负极,惰性金属片作为电泳正极,电极保持一定的间距,在适当的沉积电压和沉积时间下将石墨烯沉积在锂离子电池阴极表面,即得到石墨烯表面改性的锂离子电池阴极。本发明能够有效提高电极的初始比容量并改善循环性能。该方法工艺过程简单,生产成本低。
-
公开(公告)号:CN101823689B
公开(公告)日:2012-12-26
申请号:CN201010109943.X
申请日:2010-02-20
Applicant: 哈尔滨工业大学
IPC: B82B3/00
Abstract: 一种制备多孔金属氧化物包覆碳纳米管复合材料的方法,它涉及一种制备金属氧化物/碳纳米管复合材料的方法。解决了多孔金属氧化物包覆碳纳米管复合材料现有的制备方法存在产量低、制备废液易造成F污染和通用性差的问题。本发明制备方法包括以下步骤:一、制金属氧化物前驱溶液;二、制碳纳米管分散液;三、制金属氧化物的聚合物前驱体包覆碳纳米管复合材料;四、金属氧化物的聚合物前驱体包覆碳纳米管复合材料经水分解或热解,即制备得到多孔金属氧化物包覆碳纳米管复合材料。本发明的制备工艺简单、产量高,制备得到多孔金属氧化物包覆碳纳米管复合材料在化学电源、光催化、气体和生物敏感等领域拥有潜在应用前景。
-
公开(公告)号:CN109244354B
公开(公告)日:2021-03-02
申请号:CN201810773291.6
申请日:2018-07-14
Applicant: 哈尔滨工业大学
Abstract: 一种自支撑复合电极,属于电化学储能领域。所述的复合电极在垂直于复合电极表面的方向贯穿有阵列通孔结构,复合电极由碳纳米片与电化学储能活性材料构成的复合纳米片组成,其中,碳纳米片构成复合电极导电支撑骨架,非碳的电化学储能活性材料沉积在碳纳米片表面,所述的复合纳米片在垂直于复合电极表面方向层层堆垛。本发明的优点是:阵列垂直通孔结构为电解液中的离子提供了通畅的扩散通道,极大缩短了电解液中的离子在电极中的扩散距离。拥有这种阵列通孔结构的碳纳米片与电化学储能活性材料的复合致密电极兼顾具有高倍率性能、高面积比容量和高体积比容量。
-
公开(公告)号:CN105390700B
公开(公告)日:2019-11-29
申请号:CN201510785211.5
申请日:2015-11-16
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种通过添加金属氧化物/碳复合材料改性锂离子电池正极的方法,属于锂离子二次电池技术领域。本发明的改性方法是将锂离子电池正极活性材料与电极添加剂机械混合;其中电极添加剂为复合材料,由导电碳材料载体和金属氧化物负载两部分组成。本发明的电极添加剂能够降低锂离子电池正极阻抗随充放电循环的增加速率,进而达到提高锂离子电池循环性能的目的。
-
-
-
-
-
-
-
-
-