-
公开(公告)号:CN115114868A
公开(公告)日:2022-09-27
申请号:CN202210828481.X
申请日:2022-07-13
Applicant: 哈尔滨工业大学
IPC: G06F30/28 , G06F30/27 , G06N3/04 , G06N3/08 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种基于深度学习与损失权重分析的涡轮叶片损失模型构建方法,所述方法为了探究如何对现有涡轮叶型损失模模型修正,首先需对叶型损失中的各项损失进行拆分,并与现有模型的预测大小进行对比,分析得到需要修正的系数与项和需要添加的修正项,进而形成具有修正形式的损失预测模型。并通过对比具有不同叶型参数的涡轮叶型损失,找到需要考虑的叶型参数变量。利用人工神经网络模型建立需要考虑的叶型参数变量与需要修正的系数(或项和需要添加的修正项)之间的函数关系,并带入具有修正形式的损失预测模型,进而构建涡轮叶型损失预测模型。该方法能够准确预测具有较大攻角工作范围的涡轮叶型损失。