-
公开(公告)号:CN107679225B
公开(公告)日:2021-03-09
申请号:CN201710986821.0
申请日:2017-10-20
Applicant: 哈尔滨工业大学
IPC: G06F16/332
Abstract: 一种基于关键词的回复生成方法,本发明涉及基于关键词的回复生成方法。本发明为了解决现有方法灵活性差、容易产生语意损失,以及序列对序列模型倾向于生成一般性万能回复的问题。本发明包括:一:根据输入的消息生成关键词;二:将输入的消息转化成上下文向量,将第一个关键词和上下文向量送入解码器,若得到的预测结果与第一个关键词一致,则将第二个关键词和上下文向量送入解码器;若得到的预测结果与第一个关键词不一致,则仍将第一个关键词和上下文向量送入解码器,直至得到的预测结果与第一个关键词一致后,再将第二个关键词和上下文向量送入解码器,直至所有关键词按顺序送入解码器,并得到预测结果。本发明用于聊天机器人回复生成领域。
-
公开(公告)号:CN108681538B
公开(公告)日:2022-02-22
申请号:CN201810523282.1
申请日:2018-05-28
Applicant: 哈尔滨工业大学
IPC: G06F40/289 , G06F40/284 , G06F40/211 , G06N3/04
Abstract: 一种基于深度学习的动词短语省略消解方法,它属于计算机人工智能技术领域。本发明解决了现有动词短语省略消解方法存在的触发词判断和先行短语识别准确率低的问题。本发明对确定好的数据集1和数据集2进行预处理;判断触发词的过程加入了对句子上下文特征和句子级特征的提取,将提取的句子特征转化为向量输入支持向量机,进而根据支持向量机的输出结果确定输入句子的触发词;最后利用多层感知机,从触发词生成的多个候选先行短语中识别出正确的先行短语。本发明提取句子特征时加入了上下文特征和句子级特征,可以使触发词判断的准确率达到90%左右,先行短语识别的准确率达到85%以上。本发明可以应用于计算机人工智能技术领域用。
-
公开(公告)号:CN108681538A
公开(公告)日:2018-10-19
申请号:CN201810523282.1
申请日:2018-05-28
Applicant: 哈尔滨工业大学
CPC classification number: G06F17/277 , G06F17/271 , G06F17/2775 , G06N3/0445
Abstract: 一种基于深度学习的动词短语省略消解方法,它属于计算机人工智能技术领域。本发明解决了现有动词短语省略消解方法存在的触发词判断和先行短语识别准确率低的问题。本发明对确定好的数据集1和数据集2进行预处理;判断触发词的过程加入了对句子上下文特征和句子级特征的提取,将提取的句子特征转化为向量输入支持向量机,进而根据支持向量机的输出结果确定输入句子的触发词;最后利用多层感知机,从触发词生成的多个候选先行短语中识别出正确的先行短语。本发明提取句子特征时加入了上下文特征和句子级特征,可以使触发词判断的准确率达到90%左右,先行短语识别的准确率达到85%以上。本发明可以应用于计算机人工智能技术领域用。
-
公开(公告)号:CN107679225A
公开(公告)日:2018-02-09
申请号:CN201710986821.0
申请日:2017-10-20
Applicant: 哈尔滨工业大学
IPC: G06F17/30
Abstract: 一种基于关键词的回复生成方法,本发明涉及基于关键词的回复生成方法。本发明为了解决现有方法灵活性差、容易产生语意损失,以及序列对序列模型倾向于生成一般性万能回复的问题。本发明包括:一:根据输入的消息生成关键词;二:将输入的消息转化成上下文向量,将第一个关键词和上下文向量送入解码器,若得到的预测结果与第一个关键词一致,则将第二个关键词和上下文向量送入解码器;若得到的预测结果与第一个关键词不一致,则仍将第一个关键词和上下文向量送入解码器,直至得到的预测结果与第一个关键词一致后,再将第二个关键词和上下文向量送入解码器,直至所有关键词按顺序送入解码器,并得到预测结果。本发明用于聊天机器人回复生成领域。
-
-
-