一种基于局部信息学习的跨模态行人再识别方法

    公开(公告)号:CN112434796A

    公开(公告)日:2021-03-02

    申请号:CN202011426416.1

    申请日:2020-12-09

    Applicant: 同济大学

    Inventor: 黄德双 伍永

    Abstract: 本发明涉及一种基于局部信息学习的跨模态行人再识别方法,包括:获取标准数据集,并对标准数据集进行数据增强;将数据增强后的标准数据集划分为训练集和测试集;基于双流ResNet50卷积神经网络架构,构建跨模态行人再识别训练网络;将训练集输入跨模态行人再识别训练网络,通过训练得到跨模态行人再识别测试网络;从测试集中随机选取一张待查询图像,将待查询图像以及测试集中的候选数据库输入跨模态行人再识别测试网络,得到待查询图像对应的识别精度值。与现有技术相比,本发明通过有效提取不同模态图像之间的特定特征、对特定特征进行中高层特征联合学习以得到共享特征,能够减小RGB与红外两种模态之间的差异性、提高跨模态行人再识别的识别精度。

    一种基于局部信息学习的跨模态行人再识别方法

    公开(公告)号:CN112434796B

    公开(公告)日:2022-10-25

    申请号:CN202011426416.1

    申请日:2020-12-09

    Applicant: 同济大学

    Inventor: 黄德双 伍永

    Abstract: 本发明涉及一种基于局部信息学习的跨模态行人再识别方法,包括:获取标准数据集,并对标准数据集进行数据增强;将数据增强后的标准数据集划分为训练集和测试集;基于双流ResNet50卷积神经网络架构,构建跨模态行人再识别训练网络;将训练集输入跨模态行人再识别训练网络,通过训练得到跨模态行人再识别测试网络;从测试集中随机选取一张待查询图像,将待查询图像以及测试集中的候选数据库输入跨模态行人再识别测试网络,得到待查询图像对应的识别精度值。与现有技术相比,本发明通过有效提取不同模态图像之间的特定特征、对特定特征进行中高层特征联合学习以得到共享特征,能够减小RGB与红外两种模态之间的差异性、提高跨模态行人再识别的识别精度。

    一种融合随机批掩膜和多尺度表征学习的行人重识别方法

    公开(公告)号:CN111259850B

    公开(公告)日:2022-12-16

    申请号:CN202010076639.3

    申请日:2020-01-23

    Applicant: 同济大学

    Inventor: 黄德双 伍永

    Abstract: 本发明涉及一种融合随机批掩膜和多尺度表征学习的行人重识别方法,包括:构建行人重识别训练网络;按照预设训练参数进行网络超参数调节,得到学习网络;屏蔽多尺度表征学习和随机批掩膜分支,得到测试网络,将测试集输入测试网络后得到对应测试识别结果;判断测试识别结果准确率是否大于或等于预设值,若判断为是,则将实际数据集输入学习网络,否则重新训练网络;最后屏蔽多尺度表征学习和随机批掩膜分支,得到应用网络,将查询图像输入应用网络后得到对应的识别结果。与现有技术相比,本发明使用随机批掩膜策略、多尺度表征学习以及损失函数联合训练,能够捕获行人图像更细节性的判别力特征,并提取到局部的重要的被抑制的特征。

    一种融合随机批掩膜和多尺度表征学习的行人重识别方法

    公开(公告)号:CN111259850A

    公开(公告)日:2020-06-09

    申请号:CN202010076639.3

    申请日:2020-01-23

    Applicant: 同济大学

    Inventor: 黄德双 伍永

    Abstract: 本发明涉及一种融合随机批掩膜和多尺度表征学习的行人重识别方法,包括:构建行人重识别训练网络;按照预设训练参数进行网络超参数调节,得到学习网络;屏蔽多尺度表征学习和随机批掩膜分支,得到测试网络,将测试集输入测试网络后得到对应测试识别结果;判断测试识别结果准确率是否大于或等于预设值,若判断为是,则将实际数据集输入学习网络,否则重新训练网络;最后屏蔽多尺度表征学习和随机批掩膜分支,得到应用网络,将查询图像输入应用网络后得到对应的识别结果。与现有技术相比,本发明使用随机批掩膜策略、多尺度表征学习以及损失函数联合训练,能够捕获行人图像更细节性的判别力特征,并提取到局部的重要的被抑制的特征。

Patent Agency Ranking