一种基于点云和图像处理的分类模型焊锡缺陷检测方法

    公开(公告)号:CN119006476A

    公开(公告)日:2024-11-22

    申请号:CN202411495940.2

    申请日:2024-10-25

    Applicant: 吉林大学

    Abstract: 本发明属于焊锡缺陷检测技术领域,具体地而言为一种基于点云和图像处理的分类模型焊锡缺陷检测方法,包括:根据采集到的托盘原始图像进行#imgabs0#方向上的平移,再将平移后的图像分割成四份,获取单个的粗定位PCB板图像,对粗定位PCB板图像进行校正定位,得到精定位PCB板图像;对精定位PCB板图像中单个焊锡图像进行三维重构建立焊锡的3D点云图像,通过3D点云图像获取焊锡三维特征,并计算焊锡体积,所述三维特征包括焊锡的底面面积和高度;将获取二维特征和三维特征通过sklearn‑XGBoost分类模型对焊锡缺陷进行分类识别。解决焊锡的微小尺寸、表面反光状况且焊接状况复杂多变,导致缺陷检测精度不足,漏检与误检的问题。

    一种基于点云和图像处理的分类模型焊锡缺陷检测方法

    公开(公告)号:CN119006476B

    公开(公告)日:2025-02-14

    申请号:CN202411495940.2

    申请日:2024-10-25

    Applicant: 吉林大学

    Abstract: 本发明属于焊锡缺陷检测技术领域,具体地而言为一种基于点云和图像处理的分类模型焊锡缺陷检测方法,包括:根据采集到的托盘原始图像进行#imgabs0#方向上的平移,再将平移后的图像分割成四份,获取单个的粗定位PCB板图像,对粗定位PCB板图像进行校正定位,得到精定位PCB板图像;对精定位PCB板图像中单个焊锡图像进行三维重构建立焊锡的3D点云图像,通过3D点云图像获取焊锡三维特征,并计算焊锡体积,所述三维特征包括焊锡的底面面积和高度;将获取二维特征和三维特征通过sklearn‑XGBoost分类模型对焊锡缺陷进行分类识别。解决焊锡的微小尺寸、表面反光状况且焊接状况复杂多变,导致缺陷检测精度不足,漏检与误检的问题。

Patent Agency Ranking