行人重识别系统的实现方法

    公开(公告)号:CN108596010B

    公开(公告)日:2020-09-04

    申请号:CN201711493983.7

    申请日:2017-12-31

    Applicant: 厦门大学

    Abstract: 行人重识别系统的实现方法,涉及行人重识别技术。包括以下步骤:1)对监控视频进行离线建模,具体包括行人检测和行人特征提取;2)在线检索:在进行在线检索时,共进行两个排序,首先对于每个视频中的行人按照同检索目标的相似度进行排序,然后对于所有检索视频计算一个包含检索目标的可能性,将视频进行排序。在实际应用中采用将深度特征和手工特征相结合的方法。采用融合分类损失和三元组损失两种损失函数的网络结构进行深度特征学习,两种损失函数的融合充分利用了数据集的标签信息以及图像对的相似性信息,使得在数据集较小的情况下也可以获得有效的具有区分性的行人特征。采用改进的三元组损失函数,训练效果更优。

    行人重识别系统的实现方法

    公开(公告)号:CN108596010A

    公开(公告)日:2018-09-28

    申请号:CN201711493983.7

    申请日:2017-12-31

    Applicant: 厦门大学

    Abstract: 行人重识别系统的实现方法,涉及行人重识别技术。包括以下步骤:1)对监控视频进行离线建模,具体包括行人检测和行人特征提取;2)在线检索:在进行在线检索时,共进行两个排序,首先对于每个视频中的行人按照同检索目标的相似度进行排序,然后对于所有检索视频计算一个包含检索目标的可能性,将视频进行排序。在实际应用中采用将深度特征和手工特征相结合的方法。采用融合分类损失和三元组损失两种损失函数的网络结构进行深度特征学习,两种损失函数的融合充分利用了数据集的标签信息以及图像对的相似性信息,使得在数据集较小的情况下也可以获得有效的具有区分性的行人特征。采用改进的三元组损失函数,训练效果更优。

Patent Agency Ranking