-
公开(公告)号:CN115617689A
公开(公告)日:2023-01-17
申请号:CN202211357801.4
申请日:2022-11-01
Applicant: 南通大学
IPC: G06F11/36 , G06F40/194 , G06F40/216 , G06F40/284 , G06F40/30 , G06F18/22 , G06F18/213 , G06F18/2415 , G06F18/25 , G06N3/0464
Abstract: 本发明提出了一种基于CNN模型和领域特征的软件缺陷定位方法,属于计算机技术领域。解决了缺陷定位方法不能充分使用代码结构和语义特征的问题。其技术方案为:包括以下步骤:S1、对数据集进行预处理;S2、通过Word2Vec生成词向量;S3、使用CNN网络分别提取词汇特征和代码结构特征,并通过MLP网络进行特征融合;S4、利用rVSM提取文本相似性;S5、从bug修复历史中提取4种类型的特征;S6、构造数据集,按比例划分训练集和测试集;S7、将步骤S2、步骤S3、步骤S4提取出的6种特征输入MLP网络;S8:通过softmax函数得到二分类结果。本发明的有益效果为:本发明采用学习统一的词汇语义和代码结构特征,同时融合文本相似性特征和缺陷修复历史从而提高缺陷定位的质量和可靠性。
-
公开(公告)号:CN115469925A
公开(公告)日:2022-12-13
申请号:CN202211198773.6
申请日:2022-09-29
Applicant: 南通大学
Abstract: 本发明提供了一种基于预训练模型和空间结构信息的代码注释生成方法,属于计算机领域。解决了注释生成模型中代码特征提取部分缺乏代码空间结构的问题。其技术方案为:包括以下步骤:S1:抽取Java部分并进行预处理;S2:使用CodeBERT提取代码语义特征,并进行关键特征提取和降维;S3:构建数据集的抽象语法树(ASTs);S4:构建GNN神经网络;S5:将步骤S2中提取的语义特征向量和步骤S3得到的ASTs信息输入GNN模型;S6:将步骤S2得到的语义特征信息和步骤S5得到的结构特征信息结合;S7:使用解码器进行解码并输出注释。本发明的有益效果为:本发明提高注释生成的质量和可靠性。
-