一种基于深度学习和植物分类学的植物识别方法

    公开(公告)号:CN109871885B

    公开(公告)日:2023-08-04

    申请号:CN201910079097.2

    申请日:2019-01-28

    Abstract: 本发明公开了一种基于深度学习和植物分类学的植物识别方法。将样本植物图像进行科、属、种的标记;将样本植物图像输入深度卷积神经网络中进行训练。将损失函数设定为科、属、种标签的交叉熵损失的加权和,通过随机梯度下降算法更新神经网络的权值,待该深度卷积神经网络收敛后结束训练并固定各层权值不再改变得到训练好的深度卷积神经网络。本发明通过将深度学习与植物分类学结合,引入科、属标签作为学习目标,提高了识别正确率。

    一种基于深度学习和植物分类学的植物识别方法

    公开(公告)号:CN109871885A

    公开(公告)日:2019-06-11

    申请号:CN201910079097.2

    申请日:2019-01-28

    Abstract: 本发明公开了一种基于深度学习和植物分类学的植物识别方法。将样本植物图像进行科、属、种的标记;将样本植物图像输入深度卷积神经网络中进行训练。将损失函数设定为科、属、种标签的交叉熵损失的加权和,通过随机梯度下降算法更新神经网络的权值,待该深度卷积神经网络收敛后结束训练并固定各层权值不再改变得到训练好的深度卷积神经网络。本发明通过将深度学习与植物分类学结合,引入科、属标签作为学习目标,提高了识别正确率。

Patent Agency Ranking