-
公开(公告)号:CN105701253B
公开(公告)日:2019-03-26
申请号:CN201610125710.6
申请日:2016-03-04
Applicant: 南京大学
Abstract: 本发明公开了一种中文自然语言问句语义化的知识库自动问答方法,包括以下步骤:对用户输入的事实型问题进行中文自然语言处理,实现分词、词性标注、命名实体识别和扩展,生成语义依存树;使用泛化模板和语义解析技术获得问句中的时间、空间、事实主体、事实客体等组成成分,然后进行语义化处理,提取问句中所有事件相关的组成元素属性及其取值,生成多个“属性—取值”对,其中待回答的元素以疑问词代替,形成复杂事实三元组集合;待回答部分所在三元组联合其他相关事实三元组形成一个带条件约束的知识库查询,到知识库中进行基于相似度计算的查询匹配,从知识库中抽取结果,得到最终答案。本发明实现了对知识库的快速准确的查询应答。
-
公开(公告)号:CN105701253A
公开(公告)日:2016-06-22
申请号:CN201610125710.6
申请日:2016-03-04
Applicant: 南京大学
IPC: G06F17/30
CPC classification number: G06F17/30666 , G06F17/30684 , G06F17/30731
Abstract: 本发明公开了一种中文自然语言问句语义化的知识库自动问答方法,包括以下步骤:对用户输入的事实型问题进行中文自然语言处理,实现分词、词性标注、命名实体识别和扩展,生成语义依存树;使用泛化模板和语义解析技术获得问句中的时间、空间、事实主体、事实客体等组成成分,然后进行语义化处理,提取问句中所有事件相关的组成元素属性及其取值,生成多个“属性—取值”对,其中待回答的元素以疑问词代替,形成复杂事实三元组集合;待回答部分所在三元组联合其他相关事实三元组形成一个带条件约束的知识库查询,到知识库中进行基于相似度计算的查询匹配,从知识库中抽取结果,得到最终答案。本发明实现了对知识库的快速准确的查询应答。
-