一种基于软分配BoF的目标跟踪方法

    公开(公告)号:CN103902982A

    公开(公告)日:2014-07-02

    申请号:CN201410141636.8

    申请日:2014-04-09

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于软分配BoF的目标跟踪方法。本发明通过将各个patch的每一种局部特征分配到对应codebook中的多个codeword,并计算其权重得到跟踪目标和候选目标的BoF表示。然后通过BoF表示的相似度比较,选择与跟踪目标最相似的候选目标。区别于现有目标跟踪方法,本发明采用了软分配策略,提高了BoF表示的健壮性和区分度,提升了跟踪方法的精确度,减少了跟踪失败的场景,从而获得更佳的跟踪结果;其次本发明在构建codebook时,不仅在跟踪目标范围区进行patch采样,还在跟踪目标背景区进行patch采样,使codebook兼具描述性和区分性;最后本发明采用了自适应大小的圆形patch,通过在候选目标之间共享patch的权重向量,有效地节约了计算资源。

    一种基于软分配BoF的目标跟踪方法

    公开(公告)号:CN103902982B

    公开(公告)日:2017-02-15

    申请号:CN201410141636.8

    申请日:2014-04-09

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于软分配BoF的目标跟踪方法。本发明通过将各个patch的每一种局部特征分配到对应codebook中的多个codeword,并计算其权重得到跟踪目标和候选目标的BoF表示。然后通过BoF表示的相似度比较,选择与跟踪目标最相似的候选目标。区别于现有目标跟踪方法,本发明采用了软分配策略,提高了BoF表示的健壮性和区分度,提升了跟踪方法的精确度,减少了跟踪失败的场景,从而获得更佳的跟踪结果;其次本发明在构建codebook时,不仅在跟踪目标范围区进行patch采样,还在跟踪目标背景区进行patch采样,使codebook兼具描述性和区分性;最后本发明采用了自适应大小的圆形patch,通过在候选目标之间共享patch的权重向量,有效地节约了计算资源。

Patent Agency Ranking