-
公开(公告)号:CN115205832B
公开(公告)日:2025-04-29
申请号:CN202210799123.0
申请日:2022-07-08
Applicant: 南京农业大学
IPC: G06V20/60 , G06V10/764 , G06V10/774 , G06V10/422 , G06V10/82 , G06N3/045 , G06N3/047 , G06N3/048 , G06N3/082 , G06N3/096
Abstract: 本发明公开了一种基于VGG16的多任务学习植物表型处理方法及装置,该方法包括:(1)构建植物表型处理与分析模型:以VGG16网络作为多任务学习的硬参数共享网络,除去原VGG16的最后一个最大池化层以及之后所有的全连接层,增加任务相关的全连接层,并将其分别应用于三个特定任务层;(2)训练模型:使用任务依赖不确定性权衡每一个特定任务层的损失函数,以此来平衡回归和分类任务的损失,使用柔性因子连接不同任务,自动优化不同任务的权重,让每个任务都得到最优化训练;(3)基于训练后模型对植物表型进行处理与分析。本发明能同时完成三个有关拟南芥表型处理与分析的任务,大大提升了多任务整体分类及预测效果。
-
公开(公告)号:CN115205832A
公开(公告)日:2022-10-18
申请号:CN202210799123.0
申请日:2022-07-08
Applicant: 南京农业大学
IPC: G06V20/60 , G06V10/764 , G06V10/774 , G06V10/422 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于VGG16的多任务学习植物表型处理方法及装置,该方法包括:(1)构建植物表型处理与分析模型:以VGG16网络作为多任务学习的硬参数共享网络,除去原VGG16的最后一个最大池化层以及之后所有的全连接层,增加任务相关的全连接层,并将其分别应用于三个特定任务层;(2)训练模型:使用任务依赖不确定性权衡每一个特定任务层的损失函数,以此来平衡回归和分类任务的损失,使用柔性因子连接不同任务,自动优化不同任务的权重,让每个任务都得到最优化训练;(3)基于训练后模型对植物表型进行处理与分析。本发明能同时完成三个有关拟南芥表型处理与分析的任务,大大提升了多任务整体分类及预测效果。
-