-
公开(公告)号:CN109801273B
公开(公告)日:2022-11-01
申请号:CN201910016167.X
申请日:2019-01-08
Applicant: 华侨大学
Abstract: 本发明涉及一种基于极平面线性相似度的光场图像质量评价方法,属于图像处理领域,根据人类视觉系统理解光场图像时对场景结构变化的敏感性和光场图像中包含丰富的场景结构变化信息提出,方法包括:对参考光场图像和失真光场图像分别提取极平面图;接着分别提取参考极平面图和失真极平面图的线性特征图,进而计算得到极平面线性特征相似度图;基于极平面线性相似度图得到最终失真光场图像质量评价值。本发明充分利用极平面线性特征来描述光场图像中场景结构变化,从而评价失真光场图像的质量,反映人眼主观视觉系统对于光场图像的主观感知度,具有较好的光场图像质量评价性能。
-
公开(公告)号:CN107105297B
公开(公告)日:2019-08-30
申请号:CN201710357483.4
申请日:2017-05-19
Applicant: 华侨大学
IPC: H04N19/597 , H04N19/176 , H04N19/109 , H04N19/59
Abstract: 本发明公开了一种针对3D‑HEVC深度图帧内预测编码的快速优化方法,包括:对当前编码块CU计算其像素方差以及对角像素差的绝对值之和,根据当前编码块的方差以及对角像素差值的绝对值之和设定阈值,通过阈值比较,判定是否提前终止当前CU的深度划分;根据当前预测块PU外圈像素差的绝对值之和,设定阈值,通过阈值比较当前预测块PU是否属于平滑类型,从而跳过SDC编码,进一步降低计算复杂度。本发明能够在保持3D‑HEVC编码效率的前提下,有效地降低深度图帧内预测编码计算复杂度。
-
公开(公告)号:CN109982092A
公开(公告)日:2019-07-05
申请号:CN201910349667.5
申请日:2019-04-28
Applicant: 华侨大学
IPC: H04N19/503 , H04N19/119 , H04N19/14 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于多分支循环卷积神经网络的HEVC帧间快速方法,属于视频编码领域,方法包括:首先使用多分支卷积神经网络,对每个CTU进行预处理,并分别作为不同分支的卷积神经网络的输入,经过卷积计算之后,将得到的特征进行全连接,分为三个分支输出特征向量,再利用循环神经网络将特征向量和上一时刻的状态向量进行处理,并加入不同QP值的考量,最终输出三个分支的分类结果,三个分支分别对应每个CTU中深度等级0、1或2,判断三个深度等级的CU是否继续划分或者停止划分。本发明一种基于多分支循环卷积神经网络的HEVC帧间快速方法能够减少编码器计算开销,在保持编码性能基本不变的情况下,减少编码时间。
-
公开(公告)号:CN106504230B
公开(公告)日:2019-02-26
申请号:CN201610886339.5
申请日:2016-10-11
Applicant: 华侨大学
IPC: G06T7/00
Abstract: 本发明涉及一种基于相位一致性的全参考彩色屏幕图像质量评估方法,属于图像处理领域,根据人类视觉系统理解图像时对结构信息的依赖性和屏幕图像包含丰富边缘结构信息的特征提出,方法包括:对参考屏幕图像和失真屏幕图像从RGB色彩空间转化为CIELAB对色空间;分别提取参考屏幕图像亮度分量和失真屏幕图像亮度分量的相位一致性特征图;结合相位一致性、黄蓝对比色度分量和红绿对比色度分量计算局部图像质量图;将局部图像质量图的标准差作为最终屏幕图像质量值。本发明充分利用相位一致性和色度分量的相似性来评估彩色失真屏幕图像的质量,反映人眼主观视觉系统对于屏幕图像的主观感知度,具有较好的屏幕图像质量评估性能,且计算简单。
-
公开(公告)号:CN109166160A
公开(公告)日:2019-01-08
申请号:CN201811082243.9
申请日:2018-09-17
Applicant: 华侨大学
IPC: G06T9/00
Abstract: 本发明公开了一种采用图形预测的三维点云压缩方法,属于视频编码领域,方法包括:采用KD树对输入三维点云进行自适应分块;采用KNN算法计算编码单元内每个点的K邻近点;构建每个单元块的图并计算图形平移算子;对每个编码单元的块进行去均值,采用K-means算法对编码单元进行自适应采样,通过求解优化问题对未采样点进行预测;利用基于KD树的块均值预测算法对每个编码单元块的均值进行预测编码;最后用算术编码器对所有量化的参数和残差进行熵编码。本发明采用图形预测,能够对庞大的三维点云数据进行有效压缩,极大地改善三维点云的传输和存储效率。
-
公开(公告)号:CN106954077A
公开(公告)日:2017-07-14
申请号:CN201710208697.5
申请日:2017-03-31
Applicant: 华侨大学
IPC: H04N19/96 , H04N19/124 , H04N19/182 , H04N19/132
Abstract: 本发明涉及一种基于结构特征的HEVC码率控制方法,1)提取视频的帧图像,计算帧图像的编码树单元的2×2区域降采集特征图;2)基于各编码树单元的降采集特征图,计算当前各编码树单元的结构强度;3)基于当前各编码树单元的结构强度,计算当前帧图像的结构强度;4)基于各编码树单元的结构强度与当前帧图像的结构强度,计算各编码树单元的码率分配比重;5)根据各编码树单元的码率分配比重计算各编码树单元的量化参数。本发明利用编码树单元降采样特征图的结构强度来表征编码树单元的结构强度,很好地反应该编码树单元的感知特性,准确引导目标码率分配,获得更符合人眼特性的编码视频。
-
公开(公告)号:CN111126310B
公开(公告)日:2023-03-24
申请号:CN201911367254.6
申请日:2019-12-26
Applicant: 华侨大学
IPC: G06V40/10 , G06V10/774 , G06V10/82 , G06N3/0475 , G06N3/0464 , G06N3/094
Abstract: 本发明涉及一种基于场景迁移的行人性别识别方法,包括场景迁移过程与性别识别过程。本发明通过对偶生成对抗模型对来自不同场景的行人图像集进行图像迁移,减小不同数据集中行人场景的差异。利用迁移图像训练卷积神经网络,使网络模型具有较高精度的性别识别能力。本发明结合了对偶生成对抗模型用于图像迁移的优点,解决了以往基于卷积神经网络在行人性别识别问题上的不足,有效地提高了行人性别识别精度。本发明可以被广泛地应用在智能视频监控场景,大型商场的人口统计等。
-
公开(公告)号:CN109166160B
公开(公告)日:2022-07-01
申请号:CN201811082243.9
申请日:2018-09-17
Applicant: 华侨大学
IPC: G06T9/00
Abstract: 本发明公开了一种采用图形预测的三维点云压缩方法,属于视频编码领域,方法包括:采用KD树对输入三维点云进行自适应分块;采用KNN算法计算编码单元内每个点的K邻近点;构建每个单元块的图并计算图形平移算子;对每个编码单元的块进行去均值,采用K‑means算法对编码单元进行自适应采样,通过求解优化问题对未采样点进行预测;利用基于KD树的块均值预测算法对每个编码单元块的均值进行预测编码;最后用算术编码器对所有量化的参数和残差进行熵编码。本发明采用图形预测,能够对庞大的三维点云数据进行有效压缩,极大地改善三维点云的传输和存储效率。
-
公开(公告)号:CN108875754B
公开(公告)日:2022-04-05
申请号:CN201810426492.9
申请日:2018-05-07
Applicant: 华侨大学
IPC: G06V10/44 , G06V10/764 , G06K9/62
Abstract: 本发明涉及一种基于多深度特征融合的车辆再识别方法,包括:提取训练车辆图像的深度ID特征,提取训练车辆图像的深度颜色特征,提取训练车辆图像的深度车型特征,将提取的三种深度特征进行组合,获得融合特征,通过Softmax分类函数对融合后的深度特征进行分类。本发明对输入的车辆图像提取深度ID特征、深度颜色特征和深度车型特征并进行有效地融合,实现三种深度特征的互补,获得更有表征能力的融合特征,从而实现准确的车辆再识别。
-
公开(公告)号:CN109525847B
公开(公告)日:2021-04-30
申请号:CN201811345416.1
申请日:2018-11-13
Applicant: 华侨大学
IPC: H04N19/625 , H04N19/176 , H04N19/137 , H04N19/14
Abstract: 本发明涉及一种恰可察觉失真模型阈值计算方法,其包括:对原始图像进行DCT变换,计算相应的亮度自适应模块值和空间对比敏感度函数模块值;利用8×8DCT块的频率能量分布特点,对图像的纹理块进行更为细致的分类,获取对比度掩蔽因子,计算出对比度掩蔽模块值;利用DCT系数的空间频率分布提取出当前图像块的纹理特征,计算两个不同块之间的纹理差异,得到不同块的视觉感知调整因子;整合上述模块,得到最终的JND阈值。本发明所提的算法,在保证视觉质量的前提下,所提JND模型能容纳更多的噪声。该模型可广泛用于感知图像/视频编码、水印以及质量评价等。
-
-
-
-
-
-
-
-
-