一种基于图卷积网络的点云压缩方法

    公开(公告)号:CN118632027B

    公开(公告)日:2024-10-29

    申请号:CN202411083106.2

    申请日:2024-08-08

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于图卷积网络的点云压缩方法,涉及点云压缩技术领域,包括:编码器接收原始点云,利用最远点采样实现全局均匀采样,利用图卷积网络实现局部密度采样,按比例选择全局均匀采样后的点云和局部密度采样后的点云,获得下采样后的点云,再使用边缘卷积、点变压器和注意力机制分别进行动态特征学习和融合获得融合特征;熵瓶颈层对下采样后的点云和融合特征进行压缩‑解压缩获得重建点云和重建特征;解码器基于SGFN和DenseGCN对重建点云和重建特征进行特征提取,提取到的特征通过上采样和坐标重建获得重建后的点云。本发明能够在保证相同视觉质量的前提下显著降低比特率开销,提高压缩效率。

    一种基于图卷积网络的点云压缩方法

    公开(公告)号:CN118632027A

    公开(公告)日:2024-09-10

    申请号:CN202411083106.2

    申请日:2024-08-08

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于图卷积网络的点云压缩方法,涉及点云压缩技术领域,包括:编码器接收原始点云,利用最远点采样实现全局均匀采样,利用图卷积网络实现局部密度采样,按比例选择全局均匀采样后的点云和局部密度采样后的点云,获得下采样后的点云,再使用边缘卷积、点变压器和注意力机制分别进行动态特征学习和融合获得融合特征;熵瓶颈层对下采样后的点云和融合特征进行压缩‑解压缩获得重建点云和重建特征;解码器基于SGFN和DenseGCN对重建点云和重建特征进行特征提取,提取到的特征通过上采样和坐标重建获得重建后的点云。本发明能够在保证相同视觉质量的前提下显著降低比特率开销,提高压缩效率。

    基于三维人脸几何结构的无参考质量评估方法及装置

    公开(公告)号:CN119741304B

    公开(公告)日:2025-05-06

    申请号:CN202510262624.9

    申请日:2025-03-06

    Abstract: 本发明公开了一种基于三维人脸几何结构的无参考质量评估方法及装置,涉及计算机视觉领域,方法包括:三维人脸网格模型重建;计算映射关键点和提取关键点之间的欧几里得距离,获得几何一致性分数;用三维人脸分割算法划分人脸区域,计算高斯曲率得到区域曲率分数;计算模型表面的平滑度,检测模型表面是否存在不自然的突起或瑕疵,获得平滑度分数;将几何一致性分数、区域曲率分数和平滑度分数按照加权比例进行融合,输出三维人脸网格模型的综合质量分数。本发明无需依赖数据库中的标准人脸模型,能够基于人脸几何特征和区域性分析对单个重建的三维人脸网格模型质量进行全面评估,适用于智能美容、精准医疗等个性化重建场景。

    基于三维人脸几何结构的无参考质量评估方法及装置

    公开(公告)号:CN119741304A

    公开(公告)日:2025-04-01

    申请号:CN202510262624.9

    申请日:2025-03-06

    Abstract: 本发明公开了一种基于三维人脸几何结构的无参考质量评估方法及装置,涉及计算机视觉领域,方法包括:三维人脸网格模型重建;计算映射关键点和提取关键点之间的欧几里得距离,获得几何一致性分数;用三维人脸分割算法划分人脸区域,计算高斯曲率得到区域曲率分数;计算模型表面的平滑度,检测模型表面是否存在不自然的突起或瑕疵,获得平滑度分数;将几何一致性分数、区域曲率分数和平滑度分数按照加权比例进行融合,输出三维人脸网格模型的综合质量分数。本发明无需依赖数据库中的标准人脸模型,能够基于人脸几何特征和区域性分析对单个重建的三维人脸网格模型质量进行全面评估,适用于智能美容、精准医疗等个性化重建场景。

Patent Agency Ranking