一种基于多深度特征融合网络的车辆再识别方法

    公开(公告)号:CN108875754B

    公开(公告)日:2022-04-05

    申请号:CN201810426492.9

    申请日:2018-05-07

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多深度特征融合的车辆再识别方法,包括:提取训练车辆图像的深度ID特征,提取训练车辆图像的深度颜色特征,提取训练车辆图像的深度车型特征,将提取的三种深度特征进行组合,获得融合特征,通过Softmax分类函数对融合后的深度特征进行分类。本发明对输入的车辆图像提取深度ID特征、深度颜色特征和深度车型特征并进行有效地融合,实现三种深度特征的互补,获得更有表征能力的融合特征,从而实现准确的车辆再识别。

    一种基于多深度特征融合网络的车辆再识别方法

    公开(公告)号:CN108875754A

    公开(公告)日:2018-11-23

    申请号:CN201810426492.9

    申请日:2018-05-07

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多深度特征融合的车辆再识别方法,包括:提取训练车辆图像的深度ID特征,提取训练车辆图像的深度颜色特征,提取训练车辆图像的深度车型特征,将提取的三种深度特征进行组合,获得融合特征,通过Softmax分类函数对融合后的深度特征进行分类。本发明对输入的车辆图像提取深度ID特征、深度颜色特征和深度车型特征并进行有效地融合,实现三种深度特征的互补,获得更有表征能力的融合特征,从而实现准确的车辆再识别。

    一种基于多分支卷积神经网络的HEVC帧内预测方法

    公开(公告)号:CN109996084B

    公开(公告)日:2022-11-01

    申请号:CN201910361446.X

    申请日:2019-04-30

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多分支卷积神经网络的HEVC帧内预测方法,属于视频编码领域,本方法使用多分支卷积神经网络,对每个CTU进行预处理,并分别作为不同分支的卷积神经网络的输入,经过卷积计算之后,将得到的特征进行全连接,考虑不同QP值的影响,并最终输出三个分支的分类结果,三个分支分别对应每个CTU中深度等级0,1,2,判断三个深度等级的CU是否继续划分或者停止划分。本发明一种基于多分支卷积神经网络的HEVC帧内预测方法能够有效地减少编码器计算开销,在保持编码性能基本不变的情况下,减少编码时间。

    一种基于多分支卷积神经网络的HEVC帧内预测方法

    公开(公告)号:CN109996084A

    公开(公告)日:2019-07-09

    申请号:CN201910361446.X

    申请日:2019-04-30

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多分支卷积神经网络的HEVC帧内预测方法,属于视频编码领域,本方法使用多分支卷积神经网络,对每个CTU进行预处理,并分别作为不同分支的卷积神经网络的输入,经过卷积计算之后,将得到的特征进行全连接,考虑不同QP值的影响,并最终输出三个分支的分类结果,三个分支分别对应每个CTU中深度等级0,1,2,判断三个深度等级的CU是否继续划分或者停止划分。本发明一种基于多分支卷积神经网络的HEVC帧内预测方法能够有效地减少编码器计算开销,在保持编码性能基本不变的情况下,减少编码时间。

    基于多分支循环卷积神经网络的HEVC帧间快速方法

    公开(公告)号:CN109982092A

    公开(公告)日:2019-07-05

    申请号:CN201910349667.5

    申请日:2019-04-28

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多分支循环卷积神经网络的HEVC帧间快速方法,属于视频编码领域,方法包括:首先使用多分支卷积神经网络,对每个CTU进行预处理,并分别作为不同分支的卷积神经网络的输入,经过卷积计算之后,将得到的特征进行全连接,分为三个分支输出特征向量,再利用循环神经网络将特征向量和上一时刻的状态向量进行处理,并加入不同QP值的考量,最终输出三个分支的分类结果,三个分支分别对应每个CTU中深度等级0、1或2,判断三个深度等级的CU是否继续划分或者停止划分。本发明一种基于多分支循环卷积神经网络的HEVC帧间快速方法能够减少编码器计算开销,在保持编码性能基本不变的情况下,减少编码时间。

    基于多分支循环卷积神经网络的HEVC帧间快速方法

    公开(公告)号:CN109982092B

    公开(公告)日:2022-11-01

    申请号:CN201910349667.5

    申请日:2019-04-28

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多分支循环卷积神经网络的HEVC帧间快速方法,属于视频编码领域,方法包括:首先使用多分支卷积神经网络,对每个CTU进行预处理,并分别作为不同分支的卷积神经网络的输入,经过卷积计算之后,将得到的特征进行全连接,分为三个分支输出特征向量,再利用循环神经网络将特征向量和上一时刻的状态向量进行处理,并加入不同QP值的考量,最终输出三个分支的分类结果,三个分支分别对应每个CTU中深度等级0、1或2,判断三个深度等级的CU是否继续划分或者停止划分。本发明一种基于多分支循环卷积神经网络的HEVC帧间快速方法能够减少编码器计算开销,在保持编码性能基本不变的情况下,减少编码时间。

Patent Agency Ranking