一种基于双曲空间的时间戳增强的事件时序关系分类方法

    公开(公告)号:CN118673139A

    公开(公告)日:2024-09-20

    申请号:CN202310265504.5

    申请日:2023-03-14

    Abstract: 本发明公开了一种基于双曲空间的时间戳增强事件时序关系分类方法,实现基于Robert‑base预训练模型以句嵌入的方式提取句子中事件的语义表示,考虑句子的语义信息和句法信息,利用庞加莱球模型将欧式空间的向量表示映射到双曲空间中,将得到的向量表示输入到双曲空间神经网络中训练,从训练得到的特征向量中,学习并得到事件对向量的距离特征和时间戳预测特征,将这两类特征与常识知识库特征相融合,进行事件时序关系的分类。包括:预训练层,负责将文本语句转化为实值向量;双曲空间层,负责将欧式空间的向量表示映射到双曲空间,并使用双曲空间神经网络进行特征提取;特征融合层,负责将从双曲空间中得到的特征向量做进一步加工利用,计算事件对间的距离相似度和预测事件对间的相对时间戳,将得到的特征属性与常识知识库特征相融合;逻辑回归层,负责对得到的融合特征进行多项式逻辑回归计算,最终对事件时序关系进行分类预测。

Patent Agency Ranking