一种联邦学习方法及装置

    公开(公告)号:CN114091356A

    公开(公告)日:2022-02-25

    申请号:CN202210051900.3

    申请日:2022-01-18

    Abstract: 本发明提供一种联邦学习方法及装置,通过在联邦学习过程中加入验证轮,由服务端将待验证客户端上一次返回的模型更新参数发送至辅助客户端,利用辅助客户端的本地数据进行训练,计算验证轮中各辅助客户端训练终止时损失值与以往轮次的偏差,若所述偏差大于设定阈值的辅助客户端数量高于设定比例则标记待验证客户端为异常客户端。能够在各客户端不知情的条件下,快速有效的识别出异常的客户端,进一步的,根据异常客户端对应的各验证轮次中的偏差调节模型聚合过程中的权重,以防止异常客户端对全局模型更新的不良影响。

    一种联邦学习方法及装置

    公开(公告)号:CN114091356B

    公开(公告)日:2022-05-20

    申请号:CN202210051900.3

    申请日:2022-01-18

    Abstract: 本发明提供一种联邦学习方法及装置,通过在联邦学习过程中加入验证轮,由服务端将待验证客户端上一次返回的模型更新参数发送至辅助客户端,利用辅助客户端的本地数据进行训练,计算验证轮中各辅助客户端训练终止时损失值与以往轮次的偏差,若所述偏差大于设定阈值的辅助客户端数量高于设定比例则标记待验证客户端为异常客户端。能够在各客户端不知情的条件下,快速有效的识别出异常的客户端,进一步的,根据异常客户端对应的各验证轮次中的偏差调节模型聚合过程中的权重,以防止异常客户端对全局模型更新的不良影响。

Patent Agency Ranking