-
公开(公告)号:CN119942222A
公开(公告)日:2025-05-06
申请号:CN202510107489.0
申请日:2025-01-23
Applicant: 北京林业大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V40/10 , G06V20/52 , G06N3/084 , G06N3/09
Abstract: 本发明涉及基于点位上下文的野生动物监测图像物种分类方法,属于图像分类技术领域;本发明包括:建模监测点位与物种之间的相关性,并根据相关性强弱为样本分配权重,同时解耦点位分类和物种分类任务,以学习环境特征和物种特征。通过将点位所代表的环境信息作为物种分类的上下文,该方法增强模型对于物种与栖息地环境关系的理解,实现对分布外数据的有效泛化。
-
公开(公告)号:CN119723171A
公开(公告)日:2025-03-28
申请号:CN202411768368.2
申请日:2024-12-04
Applicant: 北京林业大学
IPC: G06V10/764 , G06V20/10 , G06V10/774
Abstract: 本发明涉及基于物种分类树的野生动物监测图像层次化分类方法,包括:在物种分类树的纲、目、科、属和种五个分类层级上进行分类,通过提供更丰富的物种判定信息降低复核模型结果的人工成本。该方法利用类别间的层次关系,引入软决策和路径矫正策略,提高了层次化分类的准确率和一致性。当在细粒度的物种级别分类错误时,模型提供的粗粒度结果也具有参考价值。
-
公开(公告)号:CN119360415A
公开(公告)日:2025-01-24
申请号:CN202411429963.3
申请日:2024-10-14
Applicant: 北京林业大学
Abstract: 本发明涉及图像增强技术领域,尤其涉及联合先验知识和扩散模型的野生动物长尾数据增强方法;本发明包括如下内容:包括以下内容:S1、构建野生动物识别模型,结合大规模语言模型引入额外的先验知识,以获得丰富有效的环境表征、动作表征的文本描述;S2、使用潜在扩散模型作为基本生成器,整合S1中所生成的文本描述,以提高生成图像的质量和多样性;S3、采用对比语言‑图像预训练模型筛选负样本,以增强野生动物长尾数据。本发明解决了野生动物长尾数据对模型训练的影响,增强了模型对于尾部类别的识别性能,进一步提高了野生动物模型的识别能力。
-
公开(公告)号:CN119206789A
公开(公告)日:2024-12-27
申请号:CN202411368901.6
申请日:2024-09-29
Applicant: 北京林业大学
IPC: G06V40/10 , G06V10/44 , G06N3/0464 , G06N3/094 , G06N3/048 , G06V10/764 , G06V10/82 , G06N3/096
Abstract: 本发明提出一种基于融合感知对抗网络的野生动物图像跨域识别方法,属于图像识别技术领域;本发明包括如下内容:采用ResNet50作为主干网络提取图像底层特征,实现模型获取图像特征的语义信息;采用对抗学习策略,实现模型对域不变特征的提取;在全连接层之间引入最大均值差异约束,扩展对抗网络在复杂背景下提取域不变特征能力;通过两层域适应策略提取域不变特征,增强模型的正迁移,实现野生动物图像的跨域识别;相较于现有技术,本发明有效提升了野生动物大规模图像数据的处理效率以及不同环境下野生动物图像的识别准确率。
-
公开(公告)号:CN119107505A
公开(公告)日:2024-12-10
申请号:CN202411256150.9
申请日:2024-09-09
Applicant: 北京林业大学
IPC: G06V10/764 , G06V40/10 , G06V10/82 , G06V20/52 , G06N3/045 , G06N3/0475 , G06N3/094
Abstract: 本发明公开了基于改进开集域适应的野生动物监测图像跨域识别方法,属于图像识别技术领域;本发明所提出的方法包括如下内容:引入基于对抗学习的开集域适应方法,训练一个弱分类器将目标域的未知类样本识别,为未知类建立伪决策边界;其次,通过对抗学习,对齐源域和目标域已知类别的特征分布,实现已知类别的识别;最后,引入中心损失,对源域的已知类别的类内变化之间建立联系,提高决策边界的判别能力,帮助模型正确分类已知类别,同时提高模型对于未知类别的识别能力。
-
公开(公告)号:CN112686190A
公开(公告)日:2021-04-20
申请号:CN202110009553.3
申请日:2021-01-05
Applicant: 北京林业大学
Abstract: 本发明属于人工智能在林业工程的应用领域,具体涉及一种基于自适应目标检测的森林火灾烟雾自动识别方法,旨在提供一种在满足实时性检测条件下具有高识别精度的森林火灾烟雾检测方法。具体包括在预先建立的森林火灾烟雾图像数据库中获取标定后的图像数据作为目标训练图像;将目标训练图像输入预定义的火灾烟雾检测识别模型,通过模型中的区域候选网络进行图像特征提取;选取预先建立的指标模型库中的指标,对图像特征提取的识别精度进行评估。本发明以改进的自适应目标检测网络为主体,有效的提高了森林火灾烟雾特征的提取能力,从而实现实时性且高精度的森林火灾烟雾的检测识别。
-
-
-
-
-