-
公开(公告)号:CN116386649A
公开(公告)日:2023-07-04
申请号:CN202310367657.0
申请日:2023-04-07
Applicant: 北京林业大学
Abstract: 本申请提供了一种基于云边协同的野外鸟类监测系统和方法,系统包括:音频采集模块,用于采集目标鸟类所处监测区域的音频信息;环境数据采集模块,用于采集监测区域的当前环境数据;主控制器模块,分别与音频采集模块和环境数据采集模块连接,用于通过鸟类鸣声检测模型确定音频信息是否包含鸟类鸣声,若是,确定音频信息为鸟类鸣声信息;云平台,用于接收主控制器模块发送的鸟类鸣声信息和当前环境数据,通过鸟类物种识别模型对鸟类鸣声信息、当前环境数据和预存的生态历史数据进行处理,得到目标鸟类的物种信息。本申请实现野外鸟类监测,通过鸟类鸣声检测模型实现有效音频信息的筛选,并提高鸟类物种识别的准确性。
-
公开(公告)号:CN117612537B
公开(公告)日:2024-06-07
申请号:CN202311591080.8
申请日:2023-11-27
Applicant: 北京林业大学
Abstract: 本发明公开了一种基于云边协同控制的鸟鸣声智能监测系统,涉及语音识别技术领域。本发明与之前的鸟鸣声处理系统相比,改进了缺少对鸟鸣声信息的有效利用;边缘侧识别结果并不充分可靠;鸟鸣声采集缺乏针对性;未能构建可持续优化的智能识别系统的问题,通过以融合增量学习的云端训练+边缘推理的智能边缘数据分析技术为核心,以智能移动设备为边缘设备基础,以移动通信技术为信息通道,连接高性能的云端智能服务器,形成具有持续学习能力的云边协同鸟鸣声监测模式。实现野外鸟鸣声采集的远程上传和自动识别,构建开放、精准识别和持续进化的云边协同鸟类鸣声监测系统。
-
公开(公告)号:CN117612537A
公开(公告)日:2024-02-27
申请号:CN202311591080.8
申请日:2023-11-27
Applicant: 北京林业大学
Abstract: 本发明公开了一种基于云边协同控制的鸟鸣声智能监测系统,涉及语音识别技术领域。本发明与之前的鸟鸣声处理系统相比,改进了缺少对鸟鸣声信息的有效利用;边缘侧识别结果并不充分可靠;鸟鸣声采集缺乏针对性;未能构建可持续优化的智能识别系统的问题,通过以融合增量学习的云端训练+边缘推理的智能边缘数据分析技术为核心,以智能移动设备为边缘设备基础,以移动通信技术为信息通道,连接高性能的云端智能服务器,形成具有持续学习能力的云边协同鸟鸣声监测模式。实现野外鸟鸣声采集的远程上传和自动识别,构建开放、精准识别和持续进化的云边协同鸟类鸣声监测系统。
-
-