-
公开(公告)号:CN104297598B
公开(公告)日:2018-04-17
申请号:CN201410558638.7
申请日:2014-10-20
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开一种VCSEL的多参数测试装置及方法,该装置及方法包括:可调电流源给VCSEL供电、准直透镜接收VCSEL的发散激光并输出平行光束、消偏振分光镜接收平行光束并分别输出第一和第二光束、聚焦透镜将第一光束聚焦为聚焦光束、光纤探头接收聚焦光束并输出测试信号至光纤光谱仪测量光谱参数、偏振分光镜将第二光束分光,分别输出水平线偏振光束和垂直线偏振光束至第一、第二光电探测器并分别测量光强,分别记录以上两个光强首次不为零时可调电流源的电流为水平和垂直偏振模式的阈值。本发明所述技术方案,解决了对VCSEL的多参数高效测试的问题,可同时测量VCSEL的光谱参数、水平偏振模式的阈值和垂直偏振模式的阈值。
-
公开(公告)号:CN103457567B
公开(公告)日:2016-06-15
申请号:CN201310418599.6
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: H03H9/02
Abstract: 本发明公开了一种用于超导稳频振荡器的超导谐振腔的内表面处理方法,包括如下步骤:离心式滚磨抛光,离心式滚磨抛光的时间为10-15天;低温退火,低温退火的温度为750℃,低温退火的时间为2-5小时;高温退火,高温退火的温度为1400-1500℃,高温退火的时间为24-32小时;化学抛光,化学抛光的时间为20-40分钟;电抛光;高压水冲洗,高压水冲洗的时间为40-120小时;低温烘烤,低温烘烤的温度为70-80℃,低温烘烤的时间为3-7天。所述方法能够有效地消除因电子束焊接引起的超导谐振腔内表面的凸起,从而提高超导谐振腔的Q值,当超导谐振腔的频率为9GHz时,其Q值高达109。
-
公开(公告)号:CN103634044A
公开(公告)日:2014-03-12
申请号:CN201310624828.X
申请日:2013-11-28
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开了一种用于太赫兹波的功率校准装置及其校准方法,该功率校准装置包括太赫兹波源(1)、准直透镜(2)、聚焦透镜(3)、标准功率计(4)以及待校功率计(5);所述太赫兹波源(1)设置于所述准直透镜(2)的一侧,且所述太赫兹波源(1)位于所述准直透镜(2)的焦点处;所述聚焦透镜(3)设置于所述准直透镜(2)的另一侧;所述标准功率计(4)或所述待校功率计(5)在需要时设置于所述聚焦透镜(3)的远离所述准直透镜(2)的一侧的焦点处;所述太赫兹波源(1)和所述标准功率计(4)都位于所述准直透镜(2)光心与所述聚焦透镜(3)光心的连线上。所述功率校准装置及其校准方法适用于0.5-0.7THz频段的太赫兹波的功率校准。
-
公开(公告)号:CN103528994B
公开(公告)日:2016-01-20
申请号:CN201310476184.4
申请日:2013-10-12
Applicant: 北京无线电计量测试研究所
IPC: G01N21/45
Abstract: 本发明公开了一种基于光学相干背散射效应的原子气体浓度检测装置及方法,该原子气体浓度检测装置包括准直激光器(1)、格兰泰勒棱镜(2)、反射镜(3)、消偏振分光棱镜(4)、样品台(5)、傅里叶透镜(6)、检偏器(7)、探测器(8)和计算机(9);准直激光器(1)、格兰泰勒棱镜(2)和反射镜(3)沿横向方向依次设置于同一条直线上;反射镜(3)和消偏振分光棱镜(4)沿纵向方向设置于同一条直线上;样品台(5)设置于消偏振分光棱镜(4)的一侧,在消偏振分光棱镜(4)的另一侧依次设置傅里叶透镜(6)、检偏器(7)和探测器(8);探测器(8)通过数据线与计算机(9)电连接;探测器(8)设置于傅里叶透镜(6)的焦面上。所述原子气体浓度检测装置及方法能够实现原子气体封闭汽室内的原子浓度的无损检测。
-
公开(公告)号:CN103472330B
公开(公告)日:2015-11-04
申请号:CN201310418373.6
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: G01R31/00
Abstract: 本发明公开了一种超导稳频振荡器的频率稳定度的测量装置,该测量装置包括第一功分器(2)、分频器(3)、第一低通滤波器(4)、相位噪声测试仪(5)、参考源(6)、混频器(7)、第二低通滤波器(8)、第二功分器(9)、第一放大器(10)、第二放大器(11)、频率计数器(12)和计算机(13)。本发明的测量装置能够用于测量超导稳频振荡器的频率稳定度。与现有技术的频率稳定度的测量装置相比,本发明的测量装置的测量分辨率明显提高,其能够测量的频率稳定度提高2个数量级。
-
公开(公告)号:CN103457567A
公开(公告)日:2013-12-18
申请号:CN201310418599.6
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: H03H9/02
Abstract: 本发明公开了一种用于超导稳频振荡器的超导谐振腔的内表面处理方法,包括如下步骤:离心式滚磨抛光,离心式滚磨抛光的时间为10-15天;低温退火,低温退火的温度为750℃,低温退火的时间为2-5小时;高温退火,高温退火的温度为1400-1500℃,高温退火的时间为24-32小时;化学抛光,化学抛光的时间为20-40分钟;电抛光;高压水冲洗,高压水冲洗的时间为40-120小时;低温烘烤,低温烘烤的温度为70-80℃,低温烘烤的时间为3-7天。所述方法能够有效地消除因电子束焊接引起的超导谐振腔内表面的凸起,从而提高超导谐振腔的Q值,当超导谐振腔的频率为9GHz时,其Q值高达109。
-
公开(公告)号:CN103486794B
公开(公告)日:2015-11-18
申请号:CN201310418835.4
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: F25D3/10
Abstract: 本发明公开了一种用于超导稳频振荡器的低温装置及其使用方法,该低温装置包括杜瓦(1)、压力表(2)、第一阀门(4)、第二阀门(5)、稳压阀(6)和干泵(7),所述压力表(2)设于所述杜瓦(1)的上端面或侧壁上,所述杜瓦(1)的上端面设有液氦灌注口(8),所述第一阀门(4)、所述第二阀门(5)和所述稳压阀(6)的一端交汇连接为一路后通过真空管(3)与所述杜瓦(1)的上端面连接,所述第一阀门(4)、所述第二阀门(5)和所述稳压阀(6)的另一端交汇连接为一路后通过真空管(3)与所述干泵(7)连接。所述低温装置能够有效地控制杜瓦内的降温速率,其降温速率能够达到1.1K/小时。所述低温装置设有稳压阀,从而能够保持杜瓦内的温度恒定。所述低温装置的温度稳定度可以达到0.0001K。
-
公开(公告)号:CN103472000B
公开(公告)日:2015-11-18
申请号:CN201310446997.9
申请日:2013-09-25
Applicant: 北京无线电计量测试研究所
IPC: G01N21/17
Abstract: 本发明公开了含缓冲气的原子气体中各组分比例的检测方法:将准直激光器作为探测光源输出准直光束;准直光束通过格兰泰勒棱镜得到线偏振准直光束;线偏振准直光束的总光强由光强功率计进行测量并将测量得到的数据传输至电脑;线偏振准直光束入射到样品台上并在通过样品台后形成向四周扩散的传输光;向四周扩散的传输光的光强由积分球和示波器进行测量并将测量得到的数据传输至电脑;向四周扩散的传输光的光强和线偏振准直光束的总光强由电脑进行数据分析计算得到向四周扩散的传输光的透射率,进一步计算得出含缓冲气体的原子气体中非缓冲气体和缓冲气体的组分比例F。解决了封闭气室中含缓冲气体的原子气体组分无损检测问题。同时还公开了该装置。
-
公开(公告)号:CN103528994A
公开(公告)日:2014-01-22
申请号:CN201310476184.4
申请日:2013-10-12
Applicant: 北京无线电计量测试研究所
IPC: G01N21/45
Abstract: 本发明公开了一种基于光学相干背散射效应的原子气体浓度检测装置及方法,该原子气体浓度检测装置包括准直激光器(1)、格兰泰勒棱镜(2)、反射镜(3)、消偏振分光棱镜(4)、样品台(5)、傅里叶透镜(6)、检偏器(7)、探测器(8)和计算机(9);准直激光器(1)、格兰泰勒棱镜(2)和反射镜(3)沿横向方向依次设置于同一条直线上;反射镜(3)和消偏振分光棱镜(4)沿纵向方向设置于同一条直线上;样品台(5)设置于消偏振分光棱镜(4)的一侧,在消偏振分光棱镜(4)的另一侧依次设置傅里叶透镜(6)、检偏器(7)和探测器(8);探测器(8)通过数据线与计算机(9)电连接;探测器(8)设置于傅里叶透镜(6)的焦面上。所述原子气体浓度检测装置及方法能够实现原子气体封闭汽室内的原子浓度的无损检测。
-
公开(公告)号:CN103486794A
公开(公告)日:2014-01-01
申请号:CN201310418835.4
申请日:2013-09-13
Applicant: 北京无线电计量测试研究所
IPC: F25D3/10
Abstract: 本发明公开了一种用于超导稳频振荡器的低温装置及其使用方法,该低温装置包括杜瓦(1)、压力表(2)、第一阀门(4)、第二阀门(5)、稳压阀(6)和干泵(7),所述压力表(2)设于所述杜瓦(1)的上端面或侧壁上,所述杜瓦(1)的上端面设有液氦灌注口(8),所述第一阀门(4)、所述第二阀门(5)和所述稳压阀(6)的一端交汇连接为一路后通过真空管(3)与所述杜瓦(1)的上端面连接,所述第一阀门(4)、所述第二阀门(5)和所述稳压阀(6)的另一端交汇连接为一路后通过真空管(3)与所述干泵(7)连接。所述低温装置能够有效地控制杜瓦内的降温速率,其降温速率能够达到1.1K/小时。所述低温装置设有稳压阀,从而能够保持杜瓦内的温度恒定。所述低温装置的温度稳定度可以达到0.0001K。
-
-
-
-
-
-
-
-
-