一种基于功率谱划分的复杂度谱脑电预测和诊断方法

    公开(公告)号:CN103876736A

    公开(公告)日:2014-06-25

    申请号:CN201410145752.7

    申请日:2014-04-11

    Abstract: 本发明提出了一种基于功率谱划分的复杂度谱脑电预测和诊断方法,属于脑电信号(EEG)分析和脑精神疾病预测和诊断领域,本发明主要包括:一种基于功率谱划分的脑电信号复杂度谱定义、分析和提取方法和一种非线性罗辑斯蒂(Logistic)复杂度谱参考模型构建方法。首先对脑电信号定义了一个基于功率谱划分的复杂度谱,并给出其计算方法,然后利用本发明对此映射生成的数据序列进行计算,据此建立一个脑电信号的分析复杂度谱参考模型,并分析各结构谱线序列的大小、数量和分布所反映的物理生物意义,画出该映射基于功率谱划分的复杂度谱参考空间分布模型。本发明可以对脑精神疾病作出预测和诊断。

    一种基于功率谱划分的复杂度谱脑电信号分类识别方法

    公开(公告)号:CN103876736B

    公开(公告)日:2017-01-18

    申请号:CN201410145752.7

    申请日:2014-04-11

    Abstract: 本发明提出了一种基于功率谱划分的复杂度谱的脑电信号分类识别方法,属于脑电信号的模式识别与分类领域。本发明主要包括:一种基于功率谱划分的脑电信号的复杂度谱定义、分析和提取方法和一种非线性罗辑斯蒂(Logistic)复杂度谱参考模型构建方法。首先对脑电信号定义了一个基于功率谱划分的复杂度谱,并给出其计算方法,然后利用本发明对此映射生成的数据序列进行计算,据此建立一个对脑电信号分析复杂度的谱参考模型,并分析各谱线序列的大小、数量和分布所反映的物理意义,画出该映射基于功率谱划分的复杂度谱参考空间分布模型。本发明可以对脑电信号进行模式识别和分类研究。

Patent Agency Ranking