-
公开(公告)号:CN112491796A
公开(公告)日:2021-03-12
申请号:CN202011169481.0
申请日:2020-10-28
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于卷积神经网络的入侵检测及语义决策树量化解释方法,将流量数据转换成流量灰度图像作为输入,对增加了可解释性的卷积神经网络进行训练,并用检测集对训练后的模型进行检测;利用类激活图构建攻击细节图像并输入训练后的卷积神经网络模型提取聚类特征进行聚类,计算检测到的异常样本与各类攻击聚类中心的距离,利用该距离建立决策树;计算语义匹配率为建立的代理决策树赋予语义意义,并利用该匹配率对语义决策树的解释效果进行量化评价。本发明对比多个模型及其改进后模型的检测性能与可解释性能,建立语义决策树对效果最优的模型进行解释,并设计语义匹配率对解释效果进行量化评价。
-
公开(公告)号:CN112491796B
公开(公告)日:2022-11-04
申请号:CN202011169481.0
申请日:2020-10-28
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于卷积神经网络的入侵检测及语义决策树量化解释方法,将流量数据转换成流量灰度图像作为输入,对增加了可解释性的卷积神经网络进行训练,并用检测集对训练后的模型进行检测;利用类激活图构建攻击细节图像并输入训练后的卷积神经网络模型提取聚类特征进行聚类,计算检测到的异常样本与各类攻击聚类中心的距离,利用该距离建立决策树;计算语义匹配率为建立的代理决策树赋予语义意义,并利用该匹配率对语义决策树的解释效果进行量化评价。本发明对比多个模型及其改进后模型的检测性能与可解释性能,建立语义决策树对效果最优的模型进行解释,并设计语义匹配率对解释效果进行量化评价。
-