-
公开(公告)号:CN119197707A
公开(公告)日:2024-12-27
申请号:CN202411371854.0
申请日:2024-09-29
Applicant: 北京宇航系统工程研究所
IPC: G01F23/80
Abstract: 本发明涉及基于体积外推的运载火箭推进剂液位测量滤波方法,包括:进行液位传感器当前节数判别;采用三角波拟合方法进行非拐点区液位高度计算;采用体积外推方法进行拐点区液位高度计算:若当前节数为奇数节,当三角波电压第一次小于Umin+ΔV时,或者,若当前节数为偶数节,当三角波电压第一次大于Umax‑ΔV时,利用此时刻前T0时间内的液位体积数据,进行最小二乘拟合,外推出体积趋势线,此时刻后Tw时间内的体积数据均用体积趋势线上的数据代替,最后将体积逆变换回高度值。本发明实现了在不降低高度解算精度的情况下消除拐点失真问题,且无需外接输入信息,实现方式相对简单。
-
公开(公告)号:CN119623041A
公开(公告)日:2025-03-14
申请号:CN202411683652.X
申请日:2024-11-22
Applicant: 北京宇航系统工程研究所
IPC: G06F30/20
Abstract: 本发明公开一种适用于GTO长窗口任务的火箭风修正滚动评估方法,首先是针对发射日的每一个决策点,进行准实时风修正弹道设计与评估,随后进行本次放行判断。如果满足本次放行条件,则可直接进入发射流程;如果不满足本次放行条件,则进行是否允许推迟一定时长t发射的判断,如果不允许推迟,则建议发射中止;如果允许推迟时长t发射,则此时进入推迟时长t发射流程,随后进入下一个决策点,以此类推。本发明能够使得现有准实时风修正弹道设计技术能够更好的应用于此类任务,尽最大能力提升火箭在发射日中对复杂天气情况的适应性,提升火箭的放行概率和飞行安全性。
-
公开(公告)号:CN119475570A
公开(公告)日:2025-02-18
申请号:CN202411512729.7
申请日:2024-10-28
Applicant: 北京宇航系统工程研究所
IPC: G06F30/15 , G06F30/20 , G06F17/18 , G06F111/08 , G06F119/14
Abstract: 本发明公开了一种运载火箭入轨精度鉴定方法,包括:产生各入轨参数偏差的补充样本;分别对每一入轨参数偏差的补充样本与飞行样本进行相容性检验和正态性检验,将通过相容性检验和正态性检验的补充样本和飞行样本作为综合样本;基于综合样本,采用置信区间估计法得到各入轨参数偏差的精度区间;基于综合样本,计算各入轨参数偏差之间的协方差矩阵;根据各入轨参数偏差之间的协方差矩阵得到各入轨参数偏差之间的相关性;基于各入轨参数偏差的精度区间和各入轨参数偏差之间的相关性完成运载火箭入轨精度鉴定。本发明为小子样情况下合理评估和优化运载火箭整体性能、科学决策后续任务方案提供了重要依据,具有十分重要的工程应用价值。
-
公开(公告)号:CN119509272A
公开(公告)日:2025-02-25
申请号:CN202411627747.X
申请日:2024-11-14
Applicant: 北京宇航系统工程研究所
Inventor: 徐利杰 , 张远东 , 程堂明 , 范瑞祥 , 王子瑜 , 王阿萍 , 韩雪颖 , 殷笑尘 , 颜国清 , 岳梦云 , 徐洋 , 张宏德 , 李奇 , 张博戎 , 李杨 , 胥新宇 , 周昊 , 司群英 , 魏远明
Abstract: 本发明提供一种末级飞行段智能关机方法,综合考虑技术创新性和工程可行性,提出了一种基于箭上利用系统、控制系统协同工作的运载火箭末级智能关机技术及架构,电气系统均为当前已有箭上产品,无需进行新箭上产品的配套。本发明通过明确系统工作过程,制定系统工作时序,设计系统间数据传递时刻、过根过节标志字、制定判断时机及判据等可靠性保障方法,保证了末级剩余推进剂质量判断的可靠性,实现根据末级推进剂剩余量抬升轨道高度,减少卫星变轨带来的推进剂消耗量,提高卫星在轨寿命。
-
公开(公告)号:CN119356067A
公开(公告)日:2025-01-24
申请号:CN202411211941.X
申请日:2024-08-30
Applicant: 北京宇航系统工程研究所
Inventor: 戚佳艺 , 高晨 , 王之平 , 岳梦云 , 张远东 , 张恒 , 彭越 , 袁伟 , 田甜 , 陈士强 , 于建新 , 侯杰然 , 虞洋 , 徐文晓 , 周昊 , 李奇 , 胥新宇 , 殷笑尘 , 岳玮 , 王芳 , 王铭瑶 , 卢頔 , 王虹力 , 夏一蕃 , 胡静涵 , 曾元圆
IPC: G05B9/03
Abstract: 本发明公开了一种基于云平台可远程支持的火箭测试发射控制系统,包括:后端远程测试模块、远程测试网络和前端远程测试模块;其中,后端远程测试模块和前端远程测试模块之间通过远程测试网络实现通信和数据交互;前端远程测试模块将收集到的发射场、车间的各项测试数据通过远程测试网络传输给后端远程测试模块;后端远程测试模块通过远程测试网络实现与各地运载火箭测发控设备、岗位人员的通信和数据交互,实现火箭发射全过程的远程辅助测试、综合管理和远程指挥。通过本发明解决了传统火箭测试发射模式效率较低,无法实现前后方协同的问题。
-
-
-
-