基于背景先验显著性的花卉图像分类方法

    公开(公告)号:CN109325484B

    公开(公告)日:2021-08-24

    申请号:CN201810854878.X

    申请日:2018-07-30

    Abstract: 本发明提供一种基于背景先验显著性的花卉图像分类方法,该方法通过背景先验显著性的方法确定花卉区域,将花卉分割方法和基于迁移学习的深度神经网络分类方法结合,将训练迁移的InceptionV3网络用于花卉图像,利用训练好的网络模型对花卉图像进行分类。在国际公开花卉识别数据集Oxford flower‑102上的实验表明:该模型比改进的Alex网络分类准确率高7.63%,且比未进行分割的花卉图像进行网络训练的模型准确率高2.85%,分类准确率达到了93.38%。

    一种煤矿安全事故本体概念抽取方法

    公开(公告)号:CN109189820B

    公开(公告)日:2021-08-31

    申请号:CN201810853624.6

    申请日:2018-07-30

    Abstract: 本发明提供了一种煤矿安全事故本体概念抽取方法,该方法将词向量和条件随机场结合起来对煤矿安全事故本体概念进行抽取,充分考虑领域词语的语义特性和领域特性,解决了传统研究方法在语义关系分析方面欠缺的问题以及煤矿安全领域数据管理不统一的问题,提高了知识的重用性。通过实验,证明了相较于较传统的基于CRFs的概念抽取方法,本文提出的方法提高了煤矿安全领域概念抽取的精度。同时,也证明了本文提出的词向量模型,相比传统CBOW模型和skip‑gram模型性能更好。

    基于背景先验显著性的花卉图像分类方法

    公开(公告)号:CN109325484A

    公开(公告)日:2019-02-12

    申请号:CN201810854878.X

    申请日:2018-07-30

    Abstract: 本发明提供一种基于背景先验显著性的花卉图像分类方法,该方法通过背景先验显著性的方法确定花卉区域,将花卉分割方法和基于迁移学习的深度神经网络分类方法结合,将训练迁移的InceptionV3网络用于花卉图像,利用训练好的网络模型对花卉图像进行分类。在国际公开花卉识别数据集Oxford flower-102上的实验表明:该模型比改进的Alex网络分类准确率高7.63%,且比未进行分割的花卉图像进行网络训练的模型准确率高2.85%,分类准确率达到了93.38%。

    一种煤矿安全事故本体概念抽取方法

    公开(公告)号:CN109189820A

    公开(公告)日:2019-01-11

    申请号:CN201810853624.6

    申请日:2018-07-30

    Abstract: 本发明提供了一种煤矿安全事故本体概念抽取方法,该方法将词向量和条件随机场结合起来对煤矿安全事故本体概念进行抽取,充分考虑领域词语的语义特性和领域特性,解决了传统研究方法在语义关系分析方面欠缺的问题以及煤矿安全领域数据管理不统一的问题,提高了知识的重用性。通过实验,证明了相较于较传统的基于CRFs的概念抽取方法,本文提出的方法提高了煤矿安全领域概念抽取的精度。同时,也证明了本文提出的词向量模型,相比传统CBOW模型和skip-gram模型性能更好。

Patent Agency Ranking