-
公开(公告)号:CN117152538A
公开(公告)日:2023-12-01
申请号:CN202311397429.4
申请日:2023-10-26
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/774 , G06V10/30 , G06T5/00 , G06V10/82
Abstract: 本发明公开了一种基于类原型清洗去噪的图像分类方法及装置,所述方法包括以下步骤:获取图像样本并输入到图像分类模型生成伪类别标签,利用伪类别标签得到类原型;基于类原型将图像样本划分为干净图像样本与噪声图像样本,并利用干净图像样本对类原型进行更新;将噪声图像样本划分为分布内噪声图像样本和分布外噪声图像样本;利用干净图像样本、分布内噪声图像样本、以及图像样本对图像分类模型的参数进行更新,得到更新后的图像分类模型,将候选图像输入到更新后的图像分类模型,得到候选图像的类别结果。上述方案解决了噪声对含有噪声标签的图像分类任务精度低的问题。
-
公开(公告)号:CN117152538B
公开(公告)日:2024-04-09
申请号:CN202311397429.4
申请日:2023-10-26
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/774 , G06V10/30 , G06T5/70 , G06V10/82
Abstract: 本发明公开了一种基于类原型清洗去噪的图像分类方法及装置,所述方法包括以下步骤:获取图像样本并输入到图像分类模型生成伪类别标签,利用伪类别标签得到类原型;基于类原型将图像样本划分为干净图像样本与噪声图像样本,并利用干净图像样本对类原型进行更新;将噪声图像样本划分为分布内噪声图像样本和分布外噪声图像样本;利用干净图像样本、分布内噪声图像样本、以及图像样本对图像分类模型的参数进行更新,得到更新后的图像分类模型,将候选图像输入到更新后的图像分类模型,得到候选图像的类别结果。上述方案解决了噪声对含有噪声标签的图像分类任务精度低的问题。
-