一种基于知识迁移和自监督学习的纵向联邦金融风控方法

    公开(公告)号:CN117853212B

    公开(公告)日:2024-06-18

    申请号:CN202410255763.4

    申请日:2024-03-06

    Abstract: 本发明公开了一种基于知识迁移和自监督学习的纵向联邦金融风控方法及装置,所述方法首先分别在金融机构和各互联网电商各自本地数据集上进行预训练,其中对有标签的金融机构,进行有监督学习,得到本地预训练模型表示层和推理层,对无标签的互联网电商,进行自监督学习,得到本地预训练模型表示层;然后在重叠数据集上建立纵向联邦风控模型,并利用预训练阶段的本地预训练模型,辅助纵向联邦模型训练,提升纵向联邦模型性能。本发明通过纵向联邦学习,在保护各方数据安全和数据隐私的前提下,实现了用户特征维度的扩展;通过知识迁移和自监督学习,实现了非重叠数据的利用,大大提高了纵向联邦金融风控模型的预测准确度。

    一种基于知识迁移和自监督学习的纵向联邦金融风控方法

    公开(公告)号:CN117853212A

    公开(公告)日:2024-04-09

    申请号:CN202410255763.4

    申请日:2024-03-06

    Abstract: 本发明公开了一种基于知识迁移和自监督学习的纵向联邦金融风控方法及装置,所述方法首先分别在金融机构和各互联网电商各自本地数据集上进行预训练,其中对有标签的金融机构,进行有监督学习,得到本地预训练模型表示层和推理层,对无标签的互联网电商,进行自监督学习,得到本地预训练模型表示层;然后在重叠数据集上建立纵向联邦风控模型,并利用预训练阶段的本地预训练模型,辅助纵向联邦模型训练,提升纵向联邦模型性能。本发明通过纵向联邦学习,在保护各方数据安全和数据隐私的前提下,实现了用户特征维度的扩展;通过知识迁移和自监督学习,实现了非重叠数据的利用,大大提高了纵向联邦金融风控模型的预测准确度。

Patent Agency Ranking