-
公开(公告)号:CN106203356B
公开(公告)日:2019-04-26
申请号:CN201610555256.8
申请日:2016-07-12
Applicant: 中国计量大学
Abstract: 本发明涉及一种缺失人脸图像恢复与识别的技术,具体涉及一种基于卷积网络特征提取的人脸识别方法,属于生物特征识别领域。首先利用截断核范算法对原始的缺失图像进行矩阵恢复处理,得到信息基本恢复的恢复矩阵,然后利用低秩矩阵分解算法对恢复矩阵进行低秩信息的提取,并由向量形式转化为矩阵卷积核,接着利用卷积神经网络提取恢复的图像特征并编码,得到每张图像的最终特征,最后借助SVM对特征样本进行训练和分类识别。本发明能避免传统方法中因图像缺失带来的低识别率问题,并对不同数据库的缺失图像都能达到较好的结果。
-
公开(公告)号:CN106203356A
公开(公告)日:2016-12-07
申请号:CN201610555256.8
申请日:2016-07-12
Applicant: 中国计量大学
CPC classification number: G06K9/00268 , G06K9/00288 , G06K9/6269
Abstract: 本发明涉及一种缺失人脸图像恢复与识别的技术,具体涉及一种基于卷积网络特征提取的人脸识别方法,属于生物特征识别领域。首先利用截断核范算法对原始的缺失图像进行矩阵恢复处理,得到信息基本恢复的恢复矩阵,然后利用低秩矩阵分解算法对恢复矩阵进行低秩信息的提取,并由向量形式转化为矩阵卷积核,接着利用卷积神经网络提取恢复的图像特征并编码,得到每张图像的最终特征,最后借助SVM对特征样本进行训练和分类识别。本发明能避免传统方法中因图像缺失带来的低识别率问题,并对不同数据库的缺失图像都能达到较好的结果。
-