一种萃取-纳滤耦合无皂化系统和无皂化方法

    公开(公告)号:CN115961140B

    公开(公告)日:2024-09-13

    申请号:CN202111174694.7

    申请日:2021-10-09

    Abstract: 有色金属是国民经济、现代农业、人民生活、国防工业和科学技术发展必不可少的基础材料和重要的战略物资。溶剂萃取法是分离有色金属资源的一种重要方法,其分离效率直接影响着钴、镍、铜、锌、稀土元素等重要有色金属的生产供应和产品品质。为了提高萃取效率,酸性萃取剂进行溶剂萃取之前需要进行碱皂化,传统的碱皂化工艺存在引入杂质离子,酸碱消耗,产生氨氮废水和高盐废水等问题。基于此,本发明公开了一种萃取‑纳滤耦合无皂化系统和无皂化方法,通过纳滤膜技术将萃余相中因萃取交换而产生的H+进行分离的实现无皂化工艺,无皂化系统主体部分由n级混合澄清萃取槽和m级纳滤装置组成(m和n为大于0的自然数),纳滤装置进料口与萃取槽澄清室重相出口相连接,出料口与下一级萃取槽混合室重相入口相连接,通过工艺参数匹配可实现整套装置的连续运行,可实现绝大部分酸循环回收,不引入杂质离子,大大减少酸碱用量,且不产生含盐废水,具有广阔的应用前景。

    一种用于天然气提氦抗塑化效应气体分离膜的结构与制备方法

    公开(公告)号:CN116272441B

    公开(公告)日:2023-10-27

    申请号:CN202210433739.6

    申请日:2022-04-24

    Abstract: 本发明公开了一种用于天然气提氦抗塑化效应气体分离膜的结构与制备方法。所述用于天然气提氦抗塑化效应气体分离膜材料具有式(I)的结构:式(I)中,R1选自Ra、Rb、Rd、Re基团中的任意一种或至少两种的组合;R2选自Rg、Rh、Rj基团中的任意一种或至少两种的组合;R3选自Rl、Rm、Rn基团中的任意一种或至少两种的组合。本发明通过改变含双羧基功能二胺单体的比例调控膜的微孔结构和气体分离性能。同时本申请提出的双向酯交换热交联作用能够增加链刚性,从而抑制高进气压力下由于天然气中轻烃、重烃和CO2等的溶解导致的塑化效应,保证了天然气提氦抗塑化效应气体分离膜对He/CH4的高分离选择性和运行稳定性。

    一种萃取-纳滤耦合无皂化系统和无皂化方法

    公开(公告)号:CN115961140A

    公开(公告)日:2023-04-14

    申请号:CN202111174694.7

    申请日:2021-10-09

    Abstract: 有色金属是国民经济、现代农业、人民生活、国防工业和科学技术发展必不可少的基础材料和重要的战略物资。溶剂萃取法是分离有色金属资源的一种重要方法,其分离效率直接影响着钴、镍、铜、锌、稀土元素等重要有色金属的生产供应和产品品质。为了提高萃取效率,酸性萃取剂进行溶剂萃取之前需要进行碱皂化,传统的碱皂化工艺存在引入杂质离子,酸碱消耗,产生氨氮废水和高盐废水等问题。基于此,本发明公开了一种萃取‑纳滤耦合无皂化系统和无皂化方法,通过纳滤膜技术将萃余相中因萃取交换而产生的H+进行分离的实现无皂化工艺,无皂化系统主体部分由n级混合澄清萃取槽和m级纳滤装置组成(m和n为大于0的自然数),纳滤装置进料口与萃取槽澄清室重相出口相连接,出料口与下一级萃取槽混合室重相入口相连接,通过工艺参数匹配可实现整套装置的连续运行,可实现绝大部分酸循环回收,不引入杂质离子,大大减少酸碱用量,且不产生含盐废水,具有广阔的应用前景。

    一种用于天然气提氦抗塑化效应气体分离膜的结构与制备方法

    公开(公告)号:CN116272441A

    公开(公告)日:2023-06-23

    申请号:CN202210433739.6

    申请日:2022-04-24

    Abstract: 本发明公开了一种用于天然气提氦抗塑化效应气体分离膜的结构与制备方法。所述用于天然气提氦抗塑化效应气体分离膜材料具有式(I)的结构:式(I)中,R1选自Ra、Rb、Rc、Rd、Re基团中的任意一种或至少两种的组合;R2选自Rf、Rg、Rh、Ri、Rj基团中的任意一种或至少两种的组合;R3选自Rk、Rl、Rm、Rn基团中的任意一种或至少两种的组合。本发明通过引入含双羧基功能二胺单体和其他二胺单体与二酐单体聚合后酯化得到具有优异成膜性能的双酯化聚酰亚胺共聚物,该共聚物通过涂覆或干喷湿纺的纺丝方法得到的平板或中空纤维天然气提氦聚酰亚胺气体分离膜具有优异的力学性能、良好的可加工性及较高的气体渗透选择性。另外,通过改变含双羧基功能二胺单体在二胺单体中的比例以调控共聚酰亚胺膜的微孔结构和气体分离性能。同时本申请提出的双向酯交换热交联作用能够增加链刚性,从而抑制高进气压力下由于天然气中轻烃、重烃和CO2等的溶解导致的塑化效应,保证了膜对He/CH4的高分离选择性和运行稳定性。

Patent Agency Ranking