-
公开(公告)号:CN110134947B
公开(公告)日:2021-03-26
申请号:CN201910307654.1
申请日:2019-04-17
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提出一种基于不平衡多源数据的情感分类方法,包括:获取来自多个数据源的训练数据,其中训练数据包含多条文本数据,每条文本数据具有情感类型标签和其对应的数据源;按数据源对训练数据进行分类,以集合每个数据源对应的文本数据作为第一数据集,根据每个第一数据集中各情感类型标签的数量,统计每个第一数据集中情感类型的标准差,选择标准差最小的第一数据作为预训练集,其余第一数据集作为后续训练集;以预训练集训练神经网络模型的权值直到损失函数收敛,输出神经网络模型作为预分类模型,以后续训练集继续训练预分类模型直到损失函数收敛,输出预分类模型作为最终分类模型;将待情感分类文本数据输入最终分类模型,得到其情感类型。
-
公开(公告)号:CN110061975A
公开(公告)日:2019-07-26
申请号:CN201910249260.5
申请日:2019-03-29
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L29/06
Abstract: 本发明涉及一种基于离线流量包解析的仿冒网站识别方法,包括:根据已知网站信息库训练随机森林分类器,以构建对仿冒网站的判别模型;获取待检测网站的数据流并保存为离线流量包,通过该离线流量包得到该待检测网站的网站信息;根据该已知网站信息库对该网站信息进行规则匹配,对匹配为仿冒网站的待检测网站进行标识,将匹配失败的网站信息通过该判别模型进行判别,并对判别为仿冒网站的待检测网站进行标识。
-
公开(公告)号:CN110134947A
公开(公告)日:2019-08-16
申请号:CN201910307654.1
申请日:2019-04-17
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提出一种基于不平衡多源数据的情感分类方法,包括:获取来自多个数据源的训练数据,其中训练数据包含多条文本数据,每条文本数据具有情感类型标签和其对应的数据源;按数据源对训练数据进行分类,以集合每个数据源对应的文本数据作为第一数据集,根据每个第一数据集中各情感类型标签的数量,统计每个第一数据集中情感类型的标准差,选择标准差最小的第一数据作为预训练集,其余第一数据集作为后续训练集;以预训练集训练神经网络模型的权值直到损失函数收敛,输出神经网络模型作为预分类模型,以后续训练集继续训练预分类模型直到损失函数收敛,输出预分类模型作为最终分类模型;将待情感分类文本数据输入最终分类模型,得到其情感类型。
-
公开(公告)号:CN106685757A
公开(公告)日:2017-05-17
申请号:CN201611168667.8
申请日:2016-12-16
Applicant: 烟台中科网络技术研究所 , 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L12/26
Abstract: 本发明涉及一种评估网络性能的方法及装置,该方法包括:选择多个指标;对当前网络进行测量,在预设时间段内对每个指标进行多次测量,获得测量值;根据获得的测量值确定每个指标的阈值;计算每个指标的所有测量值分别与阈值的数据偏离差值;对得到的数据偏离差值进行处理,得到每个指标的指标值;对得到的所有指标值进行加权处理,得到评估网络性能的综合指标值F。本发明提供的一种评估网络性能的方法及装置,实现了对多个网络性能指标进行综合评价,当加入新指标时,无需重新制定评价机制,适应性更强,可根据使用者评估需求选择多种指标进行综合评价,对网络质量的评价更客观更合理。
-
公开(公告)号:CN106685757B
公开(公告)日:2019-12-17
申请号:CN201611168667.8
申请日:2016-12-16
Applicant: 烟台中科网络技术研究所 , 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L12/26
Abstract: 本发明涉及一种评估网络性能的方法及装置,该方法包括:选择多个指标;对当前网络进行测量,在预设时间段内对每个指标进行多次测量,获得测量值;根据获得的测量值确定每个指标的阈值;计算每个指标的所有测量值分别与阈值的数据偏离差值;对得到的数据偏离差值进行处理,得到每个指标的指标值;对得到的所有指标值进行加权处理,得到评估网络性能的综合指标值F。本发明提供的一种评估网络性能的方法及装置,实现了对多个网络性能指标进行综合评价,当加入新指标时,无需重新制定评价机制,适应性更强,可根据使用者评估需求选择多种指标进行综合评价,对网络质量的评价更客观更合理。
-
公开(公告)号:CN115687798A
公开(公告)日:2023-02-03
申请号:CN202211412608.6
申请日:2022-11-11
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心 , 国家计算机网络与信息安全管理中心上海分中心
IPC: G06F16/9536 , G06F16/901 , G06Q50/00
Abstract: 一种基于特定话题下的社交网络数据获取方法,涉及网络信息采集领域,本发明针对现有的社交网络获取方法采集结果不准确、效率低、获取数据不完整、考虑维度不全面的缺陷,提供了一种社交网络数据获取方法:对目标用户在特定话题下的社交关系进行关联分析,获得社交网络数据;构建并合成社交网络全信息无向图;获得目标用户发布社交信息的总次数和相邻两用户进行社交行为的总次数;预设不同社交行为的权重,计算两个用户之间的社交关联度;获得关联用户的影响力,采集关联用户针对特定话题的社交网络数据,并统计追踪热度;当采集的总数据量达到预设数量时,停止采集。用于获取特定话题下的社交网络数据。
-
公开(公告)号:CN115713462A
公开(公告)日:2023-02-24
申请号:CN202211412609.0
申请日:2022-11-11
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心 , 国家计算机网络与信息安全管理中心上海分中心
IPC: G06T3/40 , G06N3/0464 , G06N3/08 , G06N3/082
Abstract: 本发明公开了超分辨模型训练方法、图像识别方法、装置及设备,属于图像处理技术领域,获取多个样本数据,样本数据包括获取同一场景成对的 ;构建图像超分辨率模型:将含有多个卷积网络模块的深度神经网络模型分别对低分辨率图像和高分辨率图像的特征进行提取和映射,学习特征间非线性的映射关系,最终将提取到的特征进行加权融合;构建目标方程:将低分辨率图像LR(x)输入到图像超分辨率模型中,获得超分辨率图像SR(x),SR(x)与对应的高分辨率图像HR(x)计算损失用于约束网络的训练过程。本申请能够使得重建后的高分辨率图像具有更清晰的纹理细节,进而提高图像检测的精确率。
-
公开(公告)号:CN115190217B
公开(公告)日:2024-03-26
申请号:CN202210801788.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04N1/44 , H04N19/60 , H04L9/40 , G06T9/00 , G06F21/60 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种融合自编码网络的数据安全加密方法和装置,涉及互联网数据处理技术领域。本发明为了解决现有数据安全加密时面对包含大量图片的海量数据存储资源开销大、数据传输不安全、数据传输效率低的缺陷,其方法为采用文本加密模块对文本类型数据作加密处理,构建图片自编码网络模型,采用图片压缩模块对待加密的原始图片类型数据作预压缩处理;采用图片加密模块对图片压缩编码作加密处理,采用解密模块对需要应用于下游任务的文本密文数据或图片密文数据进行解密,采用图片重建模块对解密后的图片压缩编码进行重建复原,译码器将码字通过重建处理后得到重建图片类型数据。本发明主要用于海量数据传输。
-
公开(公告)号:CN116628515A
公开(公告)日:2023-08-22
申请号:CN202310538586.6
申请日:2023-05-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/22 , G06F18/25 , G06N3/0464 , G06N3/08 , G06F17/16
Abstract: 本发明涉及社交网络技术领域,尤其为基于同空间用户特征传递的多网络身份对齐系统及方法,包括:数据采集模块:用于采集社交网络中的用户数据;身份学习模块:用于通过搭建网络拓扑结构与采集的用户数据相结合进行用户的多社交网络身份学习;身份传递模块:用于通过网络拓扑结构将用户数据进行多社交网络传递;向量生成模块:用于通过所述网络拓扑结构和用户数据获取多社交网络用户在同一个空间上的用户向量;身份对齐模块:用于通过相似度算法实现对未标注的潜在锚链路进行用户身份对齐。本发明利用自注意力机制,对用户的不同属性特征进行学习、融合,进行锚链路对齐判别,对用户的不同属性信息进行有效地整合与协调,进一步提高了用户身份的对齐准确性。
-
公开(公告)号:CN115309899A
公开(公告)日:2022-11-08
申请号:CN202210949186.X
申请日:2022-08-09
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06K9/62 , G06F40/284
Abstract: 本发明公开了一种文本中特定内容识别存储方法及系统,属于文特定词识别的技术领域,其方法包括生成特定词库和规则库;获取待识别的文本集合;提取当前特定文本数据集中的新特定词,得到新特定词集合;将需要训练的词组输入BERT模型;从特定文本中获取疑似新特定词集合,利用BERT模型计算特定词库中各词的特征向量与疑似新特定词集合中各词的特征向量的余弦相似度,并基于计算结果判定新特定词。本发明解决了现有技术中基于预构建模式规则的匹配方式仅局限于特定匹配规则模式,匹配方式不够灵活,结果不够全面,难以及时识别海量新出现的特定词及其变体词,且由于文本中涉及大量错综复杂的词语,容易造成特定词的模糊匹配,导致误识别的问题。
-
-
-
-
-
-
-
-
-